

Oracle CPQ Cloud

What’s New in 2016 R1

August 2016

Oracle CPQ Cloud

What’s New in 2016 R1

August 2016

 2

TABLE OF CONTENTS

REVISION HISTORY .. 4

OVERVIEW ... 5

RELEASE FEATURE SUMMARY ... 6

ENTERPRISE EXCELLENCE ... 7

Bill of Material (BOM) Mapping .. 7
BOM Mapping Overview .. 8
BOM Mapping Tables ... 10
BOM Administration ... 12
Bills of Materials Page .. 13
Declare Util Function .. 17
BOM Mapping Rules ... 18
Reference Information ... 19

Subscription Ordering .. 29
Assets ... 29
Asset Creation .. 31
Asset Modification .. 31
Reconfigure .. 32
Follow-On Orders ... 32
Asset Termination .. 32

Contract Negotiation ... 33
Enable Contract Negotiation .. 33
Create Contract From Single-Language Template .. 34
Capture Versions of the Contract ... 34
Generate List of Differences Between Document Versions ... 34
Merge Approved Changes .. 35

Secure Data Table Columns ... 36
Adding a Secure Column to a Data Table ... 38

EASY ADMINISTRATION ... 40

Single Select Pick Lists in Configuration ... 40
Apply Hiding Rules to a Single Select Pick List Attribute ... 40
Use Related Rules Tab to Find References Made from a Single Select Pick List ... 41
Display a Single Select Pick List as an Image Grid ... 42
Use Array Set as Source of Single Select Pick List Data ... 44

UI Designer .. 47
Layouts List Page .. 47
UI Designer Screen Layout .. 48
Layout ... 49
Attributes ... 49
Layout Settings ... 50
Panel Settings ... 52
Table Settings ... 53
Column Settings.. 54
Button Settings ... 55

Performance Logs Page ... 57
Query by Example (QBE) .. 57

BML Enhancements ... 58
JSON Related Functions .. 59
JSON Array Related Functions .. 59
JSON Path Related Functions .. 60
Functions to Support Remote Approvals .. 65
Generate Unique IDs Function ... 69
URL Access Function ... 69
Same Server Authentication ... 70

 3

User Session Functions ... 70
Global Dictionary Functions ... 72
Throw Error .. 75
Apply Template .. 76
BML Print Log ... 77

Document Designer Enhancements ... 78
Performance Enhancements .. 78
Formatting and Style Enhancements .. 78
Contract Negotiation Enhancements ... 86

Long Running Thread Diagnostics ... 88
View Logs .. 88
Timeout Action Settings ... 91

INTEGRATION .. 93

Salesforce1 Integration .. 93
CPQ Cloud − eBusiness Suite (EBS) BOM Reference Integration .. 95
Process Cloud Service (PCS) Integration... 97

Approvals Overview.. 98
Approval Sequence Selection ... 99
Remote Approval Process Functions .. 99

Rest APIs .. 101
REST APIs for Contract Negotiations .. 103
REST APIs for Subscription Ordering ... 104
Enhancements to Query Parameters ... 115

Platform as a Service (PaaS) Integration Sample Applications .. 118
XLS to CSV Converter Sample Application .. 118
Quote Statistics Sample Application ... 118

PRE-UPGRADE CONSIDERATIONS .. 120

Known Functionality ... 120
Resolved Known Issues ... 121
Translation Status ... 121

POST-UPGRADE CONSIDERATIONS .. 122

Browser Support ... 122
Salesforce Managed Package Support ... 124
Training ... 124
Additional Information ... 124

 4

REVISION HISTORY

This document will continue to evolve as existing sections change and new information is added. All

updates are logged below, with the most recent updates at the top.

Date What’s Changed Notes

24 AUG 2016 Initial Document Creation

 5

OVERVIEW

This guide outlines information about new or improved functionality in Oracle Configure, Price, and

Quote (CPQ) Cloud 2016 Release 1 (2016 R1). Each section includes a brief description of the feature,

the steps you need to take to enable or begin using the feature, any tips or considerations to keep in

mind, and the resources available to help you.

GIVE US FEEDBACK

We welcome your comments and suggestions to help us improve this document. Send your feedback to

CPQ_Cloud_documentation_us_grp@oracle.com.

mailto:cpqcloud_documentation_us_grp@oracle.com

 6

RELEASE FEATURE SUMMARY

Some of the new CPQ Cloud 2016 Release 1 features are automatically available to users after the

upgrade and some require action from the company administrator or Oracle.

The following table offers a quick view of the actions required to enable each of the features.

Feature

 Action Required to Enable Feature

Automatically Available
Administrator
Action Required

Oracle Service Request
Required

Enterprise Excellence

BOM Mapping
Subscription Ordering
Contract Negotiation
Secure Data Table Columns
Easy Administration

Single Select Pick Lists in Configuration
UI Designer
Performance Logs
BML Enhancements
Document Designer Enhancements
Long Running Thread Diagnostics
Integration
Salesforce 1 Integration
CPQ Cloud - EBS BOM Reference Integration
PCS Integration
Rest APIs
PaaS Integration Sample Applications
Upgrade Considerations
Pre-Upgrade Considerations
Post-Upgrade Considerations

 7

ENTERPRISE EXCELLENCE

Oracle CPQ Cloud enables companies to streamline the entire opportunity-to-quote-to-order process,

including product selection, configuration, pricing, quoting, ordering, and approval workflows. CPQ

Cloud provides a flexible, scalable, enterprise-ready CPQ Cloud solution ideal for companies of all sizes

that sell products and services across direct, indirect, and e−Commerce sales channels.

Oracle is continually upgrading the functionality of CPQ Cloud to meet the needs of customers who must

conform to a variety of regulatory and compliance paradigms. New features that reinforce enterprise

excellence include:

 Bill of Material (BOM) Mapping

 Subscription Ordering

 Contract Negotiation

 Secure Data Table Columns

BILL OF MATERIAL (BOM) MAPPING

The new BOM Mapping feature, available in CPQ Cloud 2016 R1, allows administrators to import multi-

level BOM product structures for use in CPQ Configuration, Commerce transactions, and downstream

integration of orders to an Enterprise Resource Planning (ERP) system. This data-driven solution

significantly reduces the amount of time needed to set up and maintain integrations of BOM structures

with ERP systems using new BOM tables and a new BOM Mapping rule type.

The BOM Mapping feature delivers the ability to:

 Capture BOM item definitions in CPQ Data Tables. Use existing Data Table migration or
upload features to import BOM item definitions from fulfillment systems.

 Map Configuration attributes to the resulting BOM items. Use simple Table-Based rules,
advanced BML-Based Rules, or both to accomplish BOM Mapping.

 Create and reconfigure transaction lines from Configuration selections using BOM Mapping
rules.

 Generate Sales or Manufacturing BOMs for integration with downstream fulfillment
systems.

NOTE: Implementing BOM Mapping requires advanced knowledge of CPQ Configuration and fulfillment

system BOM integration.

The BOM Mapping section consists of the following topics:

 BOM Mapping Overview - describes BOM Mapping, BOM Mapping tables, hierarchical
relationships, and BOM table relationships.

 BOM Administration - examines the new BOM Administration Platform and Configuration
rules added for BOM Mapping.

 Reference Information - covers uses cases, system attributes, BML functions, and Web
Service changes to support BOM Mapping.

 8

BOM MAPPING OVERVIEW

Fulfillment systems often maintain bills of material (BOMs) containing complex, multi-level part

structures that differ from the Configuration attributes used in CPQ Cloud when sales users configure

products. The BOM Mapping feature provides a data-driven mechanism for mapping these differing

product views.

As illustrated in Figure 1: BOM Mapping Overview, BOM Mapping enables administrators to associate

their fulfillment system BOMs to an Oracle CPQ Cloud Configuration. BOM Mapping captures these

product structures in BOM definition tables. Administrators perform item mapping and setup BOM

Configuration rules to link the BOM definitions to the CPQ Cloud Configuration attribute selections.

When a customer generates a quote, CPQ uses BOM Mapping rules to create a BOM instance. The BOM

instance represents a hierarchy of Commerce transaction lines, containing the BOM items and attributes

associated with Configuration selections. The new ‘get BOM’ function generates a sales or

manufacturing BOM using the BOM Mapping rules. CPQ can then send the sales or manufacturing BOM

to an ERP system for order fulfillment.

Figure 1: BOM Mapping Overview

 9

HIERARCHICAL RELATIONSHIPS IN BOM MAPPING

A central component of the BOM Mapping feature is the capture of BOM product structure hierarchies
in CPQ Cloud for reference by the BOM Mapping rules. The following example illustrates how these
hierarchical parent-child relationships are stored.

The fulfillment BOM tree shown in Figure 2 contains root part LP94777 (i.e. a CPQ model) and four
parent parts (LAPPRO1101, LAPPRO1109, BP3000, and EXT1000). Parent part BP3000 has three children
(BP3025, BP3050, and BP3075), and EXT1000 has two children (EXT2000 and EXT3000) and four
grandchildren (EXT2001, EXT2002, EXT3001, and EXT3002).

The CPQ BOM Data Table represents this tree using columns that store the item variable name, the
parent item variable name, and the root item variable name.

 For LAPPRO1101, the parent item and root item are both LP94777.

 For BP3025, the parent item is BP3000. The root item is LP94777.

 For EXT2001, the parent item is EXT2000. The root item is still LP94777.

NOTE: Continue this pattern to support unlimited levels of parent-child relationships, allowing the

representation of very complex multi-level BOM structures.

Figure 2: BOM Tree Example

The next section provides an overview of the tables used to store and map these BOM hierarchies to

Configuration attributes.

 10

BOM MAPPING TABLES

In 2016 R1, CPQ Cloud introduces five BOM Mapping platform tables to support the full BOM Mapping
solution: BOM Item Definition, BOM Item Mapping, BOM Attribute Definition, BOM Attribute Mapping,
and BOM Attribute Translation. Many customers may only require one or two of these tables to
implement their use cases.

The BOM Mapping platform tables contain the schema for associating BOM structures to Configuration
attribute values. Customer-specific mapping details are stored in CPQ Cloud Data Tables. The
combination of these two sets of tables enables users to create simple Table-Based Configuration rules
to associate fulfillment system BOMs, CPQ Configuration attributes, and Commerce transaction lines
without the need for BML or other logic.

Administrators upload or migrate BOM structures to CPQ Data Tables using CPQ Cloud’s standard
importing features. Data Tables can be linked to the corresponding BOM Mapping platform tables for
use in BOM Mapping rules, as shown in the illustration below.

Figure 3: BOM Data Table to BOM Platform Table Mapping

CPQ Cloud provides standard, downloadable Data Table definitions that can be used to create
implementation-specific tables, which map automatically to the BOM Mapping platform tables.
Alternatively, customers can reuse existing Data Tables containing BOM structure details by mapping
the columns in their tables to the BOM Mapping platform tables.

NOTE: Administrators must activate the required BOM Mapping platform tables, and populate BOM

Mapping Data Tables prior to BOM Mapping.

 11

BOM ITEM DEFINITION TABLE

The BOM Item Definition Table stores the BOM hierarchical relationships used in the fulfillment system,
along with item variable references, which recursively link child items to parent items. In addition to the
hierarchical information, BOM definition tables also store other information from the fulfillment BOM,
such as:

 Fulfillment system IDs

 Default quantity

 Whether an item is optional, a sales item, or a manufacturing item

 BOM item effective dates

NOTE: The BOM Item Definition table is the key component of BOM Mapping and is the only required

table for all use cases. For examples of when these tables are used, refer to BOM Mapping Use Cases.

BOM ITEM MAPPING TABLE

The BOM Item Mapping Table associates BOM items to Configuration attributes. Activating this table

enables simple Table-Based BOM Mapping Configuration rules. If this table is not active, administrators

would use advance BML-Based Rules to establish the association between BOM items and Configuration

attributes.

BOM ATTRIBUTE DEFINITION TABLE

The BOM Attribute Definition Table stores attribute definitions and attribute effective dates from the

fulfillment system. These attributes can define options, such as color or size. BOM item variable

references associate the fulfillment system attributes with the applicable BOM items.

BOM ATTRIBUTE MAPPING TABLE

The BOM Attribute Mapping Table stores associations between BOM attributes, Configuration

attributes, Commerce transaction line attributes, and quantity values. Setting up this table enables

simple Table-Based BOM Mapping Configuration rules for associating BOM attributes to CPQ

Configuration and Commerce.

BOM ATTRIBUTE TRANSLATION TABLE

The BOM Attribute Translation Table associates translations for the applicable attributes. BOM attribute

variable references associate the fulfillment system translation with the applicable attributes.

The next section illustrates the key relationships for BOM tables.

 12

BOM TABLE RELATIONSHIPS

BOM Mapping uses variable names as references to capture hierarchical relationships. BOM Mapping

also uses variable names to identify relationships between BOM tables. Figure 4: BOM Table

Relationships illustrates these relationships.

Figure 4: BOM Table Relationships

The next section describes the new CPQ pages, functions, and rules added to support BOM Mapping.

BOM ADMINISTRATION

CPQ Cloud 2016 R1 introduces several new pages to support BOM Mapping implementation and

maintenance. This release also provides new functions for product administration to support BOM

Mapping Configuration rules.

 13

BOM ADMINISTRATION PLATFORM

The BOM Administration Platform page provides administrator access to BOM functions and objects to

set up and maintain BOM Mapping Implementations.

 BOM Tables - provides access to the Bills of Materials Tables page, where administrators
can access, activate, and map BOM tables.

 BOM Root Items List - enables administrators to inspect root items, and then recursively
select components to view all items, attributes, and translations associated with the BOM
Item Tree. Administrators can also use these pages to isolate any errors in the BOM Item
Tree.

 Declare Util Function - allows administrators to select a BML utility function invoked during
the Configuration Save event to support Subscription Ordering.

Access the BOM Mapping Administration Platform from Admin > Products > BOM.

Figure 5: BOM Administration Platform

BILLS OF MATERIALS PAGE

The Bills of Materials Tables page provides access to BOM Mapping platform tables, shows mapping

status, and provides the ability to activate tables. Administrators only need to activate and map the

BOM Mapping platform tables required to meet their business needs.

Figure 6: Bills of Materials Tables Page

The table Name link provides access to the Edit BOM Table Definition page.

 14

EDIT BOM TABLE DEFINITION PAGE

The Edit BOM Table Definition page allows the administrator to map CPQ Data Tables populated with

customer BOM data to CPQ platform BOM Mapping Tables. Each BOM table has a corresponding Edit

BOM Table Definition page to enable mapping. If the Data Table column names and data types match

the default columns, column mapping is automatic. If not, the administrator must map each column

manually. CPQ Cloud provides sample table definitions for each BOM table, which define the required

schema. Administrators can acquire sample tables from the Download Sample link.

Figure 7: Edit BOM Table Definition Page for BOM Item Definition Table

BOM ROOT ITEMS ADMINISTRATION LIST PAGE

After implementing BOM Mapping, the BOM Root Items Administration List page allows administrators

to validate the BOM Item Tree containing BOM items, BOM item attributes, and BOM attribute

translations. The BOM Root Items Administration List page displays the BOM root item names, part

numbers, and item IDs. The root item is the highest level in the BOM tree and is equivalent to a CPQ

Cloud model.

Access the BOM Root Items Administration List page from Admin > Products > BOM >

BOM Root Items List.

Figure 8: BOM Root Items List Page

Variable Name links provide access to the BOM Item Tree Administration page.

 15

BOM ITEM TREE ADMINISTRATION PAGE

The BOM Item Tree Administration page displays the expanded hierarchy and BOM definition

information for a root BOM item, child items, and grandchild items. If there are any mapping errors, this

page displays error indicators. To view validation errors refer to BOM Item Tree with Validation Errors.

Figure 9: BOM Item Tree Administration Page

Variable Name links provide access to the BOM Item Administration page.

BOM ITEM ADMINISTRATION PAGE

The BOM Item Administration page displays definition information for the selected BOM item. It also

displays associated attributes, if attribute definitions are provided.

Figure 10: BOM Item Administration Page

If the BOM Attribute Definition Table is active and the selected BOM item has attributes, the Variable
Name links provide access to the BOM Attribute Administration page to view attribute details.

 16

BOM ATTRIBUTE ADMINISTRATION PAGE

The BOM Attribute Administration page displays the attribute values for the selected BOM attribute.

Figure 11: BOM Attribute Administration Page

If the BOM Attribute Translation Table is active and the selected BOM attribute has translation, click
Translations to access the attribute translations.

BOM ATTRIBUTE TRANSLATION ADMINISTRATION PAGE

The BOM Attribute Translation Administration page shows the language, the translated attribute name
and display values.

Figure 12: BOM Attribute Translation Administration Page

The next section provides information on BOM item validation errors. The error indicators allow
administrators to isolate BOM definition errors.

 17

BOM ITEM TREE WITH VALIDATION ERRORS

If there are any validation errors in the BOM Item Tree, the BOM Item Tree Administration page

displays an error message, at the top of the page. Items proceeded by an error indicator denote

errors exist for the BOM item, its child items, or grandchild items. Administrators can examine

descending elements of the BOM item definition to see error details.

Figure 13: BOM Item Tree with Validation Errors

NOTE: Errors must be resolved before setting up BOM Mapping Configuration rules.

DECLARE UTIL FUNCTION

To utilize BOM Mapping with Subscription Ordering, administrators select a BML utility function invoked

during the Configuration Save event. The recommended utility function compares a Configuration with

projected assets and saves the results to Commerce transaction lines. For additional information, refer

to the Asset-Based Ordering Implementation Guide.

Figure 14: Declare BML Util Function

 18

BOM MAPPING RULES

Administrators create BOM Mapping Configuration rules at the Model level. BOM Mapping rules

associate Configuration attributes to the BOM items. Use simple Table-Based Rules, advanced BML-

Based Rules, or both for BOM Mapping. A new BOM Mapping rule type is available from the Navigation

drop-down menu on the Model Administration List page.

 Figure 15: Model Administration - BOM Mapping

Selecting Navigation > BOM Mapping and List displays the BOM Mapping: Rules List page.

This page shows the order the rules actuate, the Name, and Status of BOM Mapping rules.

Administrators can add and manage BOM Mapping rules as well as edit their translation.

Figure 16: BOM Mapping: Rules List

Selecting the Variable Name link of a Model opens the associated BOM Mapping Rule page.

 19

This page displays the rule Name, Variable Name, Status, effective dates, Condition Type, Rule Type, the

Target BOM, and Target Commerce Process.

Simple Table-Based BOM Mapping rules use the BOM Mapping tables to declaratively associate the

Configuration attributes to BOM items. BOM Mapping requires the Target BOM action. Select one of the

Root BOM items as the Target BOM to create based upon Configuration selections. Specify the Target

Commerce Process if more than one is implemented.

Figure 17: BOM Mapping Rule Page

REFERENCE INFORMATION

This section provides BOM Mapping use cases, system attributes, BML functions, and web service
updates.

 20

BOM MAPPING USE CASES

The versatility of the BOM Mapping feature allows administrators to choose among a variety of options
for implementation. Administrators must activate and map only those BOM Mapping tables needed to
support their requirements. The table below summarizes several approaches to leverage the BOM
Mapping feature.

Usage Example Usage Explanation Active Tables

Basic BOM
Integration

Capture complex BOM structures and fulfillment

fields. Identify associations between BOM items and

Configuration attributes using only advanced BML-

Based Rules.

BOM Item Definition

BOM Mapping
Integration

Integrate with fulfillment systems, such as Oracle EBS,

that do not use BOM item attributes. Identify BOM

item associations using simple Table-Based Rules.

Advanced BML-Based Rules are optional and can

further refine Configuration attributes.

BOM Item Definition

BOM Item Mapping

BOM Mapping
with Attributes
Appended in
String Variables

In addition to the BOM Mapping integration, this use

case adds BOM attributes to BOM item lines. Identify

BOM item associations using simple Table-Based

Rules, and BOM attributes using advanced BML-Based

Rules.

BOM Item Definition

BOM Item Mapping

BOM Attribute Definition

BOM Mapping
using Attributes
to Set Transaction
Line Attributes

This scenario uses BOM Attribute Mapping to set the

values of Commerce line attributes, and does not use

the BOM Attribute Definition table. Identify BOM

item associations using simple Table-Based Rules.

Advanced BML-Based Rules are optional and can

further refine Configuration attributes.

BOM Item Definition

BOM Item Mapping

BOM Attribute Mapping

Full-Service
BOM Mapping
without Attribute
Translations

Integrate with fulfillment systems, such as Siebel, that

support BOM item attributes. Identify BOM item and

attribute associations using simple Table-Based Rules.

Advanced BML-Based Rules are optional and can

further refine Configuration attributes.

BOM Item Definition

BOM Item Mapping

BOM Attribute Definition

BOM Attribute Mapping

Full-Service
BOM Mapping

Integrate with fulfillment systems that support BOM

item attributes with translations. Identify BOM item,

attribute, and attribute translation associations using

simple Table-Based Rules. Advanced BML-Based Rules

are optional and can further refine Configuration

attributes.

BOM Item Definition

BOM Item Mapping

BOM Attribute Definition

BOM Attribute Mapping

BOM Attribute Translation

 21

BOM MAPPING SYSTEM ATTRIBUTES

Several new system attributes support the BOM Mapping feature. Administrators can use these

attributes to display the BOM hierarchy or hierarchy relationships in the Commerce Transaction Line

Item Grid user interface. For more information on these attributes and their role in BOM Mapping and

Subscription Ordering, refer to the BOM Mapping Implementation Guide and the Asset-Based Ordering

Implementation Guide.

Name Variable Name Type Description

Line Item BOM ID _line_bom_id Text The BOM item instance id.

Line Item BOM ID _line_bom_parent_id Text The parent BOM item instance id.

Line BOM
Part Number

_line_bom_part_number Text The part number of the BOM item.
Only applicable to the model line.

Line Item
BOM Attributes

_line_bom_attributes Text BOM attributes, stored as a JSON
string.

Line BOM
 Item Quantity

_line_bom_item_quantity Integer The BOM item line quantity. This is the
unexploded line quantity, whereas
_price_quantity stores the exploded
quantity.

Line BOM Level _line_bom_level Integer The BOM item depth (level) in the
quote. The value is 0 for the root BOM
item.

Line BOM
Effective Date

_line_bom_effective_date Date BOM Effective Date. If null, it is
interpreted as the current time.

 22

BML FUNCTIONS FOR BOM MAPPING

In release 2016 R1, CPQ Cloud delivers the following BML functions to support the BOM Mapping

feature: getbom, savebom, convertbomtoflat, and convertbomtohier.

GET BOM FUNCTION

getbom

Description For fulfillment system integrations, the getbom function retrieves the saved sales BOM
or manufacturing BOM from a quote, to submit to the fulfillment system for order
fulfillment.

For Subscription Ordering, the getbom function retrieves the saved sales BOM from
open orders.

Parameters bsId Integer Use this parameter to specify the Commerce
Transaction ID.

lineNumber Integer Use this parameter to specify the document
number of the model line. The line number also
represents the root BOM line in the quote.

lineFields String Use this parameter to identify additional line
attributes fetched from the quote line, then
stored in the returned BOM instance.

Optional, the default value is null if not provided.

validateBomModel Boolean Use this parameter to validate the returned BOM
against the latest BOM item definition. Validation
will:

 Verify the BOM instance tree (parts and
hierarchy) against the BOM item definition.

 Populate the BOM item variable names.

 Correct the BOM instance hierarchy according
to the latest definition.

 Exclude items that no longer exist in the latest
definition.

Optional, the default value is true if not provided.

flattenChildItems Boolean Use this parameter to flatten child items and
return all descendant BOM items as direct
children of the root BOM item.

Optional, the default value is false if not
provided.

isSalesBom Boolean This parameter returns a sales BOM if true, and a
manufacturing BOM if false.

 23

getbom

 Optional, the default is true if not provided.

Syntax Json getbom(Integer bsId, Integer lineNumber [, String[]

lineFields [, Boolean validateBomModel [, Boolean

flattenChildItems [, Boolean isSalesBom]]]])

Sample Input bsId 18430319

lineNumber 2

Sample Return {

 "partNumber": "part49",

 "quantity": 10,

 "id": "BOM_root",

 "parentId": "",

 "attributes": {},

 "fields": {

 "_line_bom_level": "0"

 },

 "explodedQuantity": 10,

 "category": "sales",

 "variableName": "root",

 "definition": {

 "SequenceNum": 814,

 "ItemId": "814",

 "ItemType": "Standard Item",

 "Optional": "Y"

 },

 "children": [

 {

 "partNumber": "part50",

 "quantity": 5,

 "id": "BOM_text_bom",

 "parentId": "BOM_root",

 "attributes": {},

 "fields": {

 "_line_bom_level": "1"

 },

 "explodedQuantity": 50,

 "variableName": "text_bom",

 "definition": {

 "SequenceNum": 815,

 "ItemId": "815",

 "ItemType": "Standard Item",

 "Optional": "Y"

 }

 }

]

}

 24

SAVE BOM FUNCTION

savebom

Description The savebom function saves a BOM into a quote without Configuration attributes and
returns the document number of the saved quote. For Subscription Ordering, the
savebom function saves discontinued assets into a quote.

Do not invoke this function from the quote modify action; as the modify action and
savebom function will compete to update the same quote. Use reconfigure for the
saved BOM instance.

Parameters bsID Integer Use this parameter to specify the Commerce Transaction ID.

bomJson JSON Use this parameter to hold the BOM instance JSON data.

Syntax Integer savebom(Integer bsId, Json bomJson)

Sample Input bsId 18430319

bomJson {

 "partNumber": "part49",

 "id": "BOM_root",

 "quantity": 10,

 "parentId": "",

 "attributes": {},

 "fields": {"_line_bom_level": "0"},

 "explodedQuantity": 10,

 "category": "sales",

 "variableName": "root",

 "definition": {

 "SequenceNum": 814,

 "ItemId": "814",

 "ItemType": "Standard Item",

 "Optional": "Y"

 }, "children":[{

 "partNumber": "part50",

 "quantity": 5,

 "id": "BOM_text_bom",

 "parentId": "BOM_root",

 "attributes": {},

 "fields": {"_line_bom_level": "1"},

 "explodedQuantity": 50,

 "variableName": "text_bom",

 "definition": {

 "SequenceNum": 815,

 "ItemId": "815",

 "ItemType": "Standard Item",

 "Optional": "Y"

 }

 }]

}

Sample Return 5

 25

CONVERT A HIERARCHICAL BOM INTO A FLATTENED BOM FUNCTION

convertbomtoflat

Description The convertbomtoflat function converts a hierarchical BOM into a flattened BOM. A flat
BOM stores all descendants as direct children, including children, grandchildren, etc.
Flattened BOMs are easier to process.

Parameter bomJson JSON Use this parameter to hold the JSON target.

Syntax Json convertbomtoflat(Json bomJson)

Sample Input

bomJson {"partNumber":"part1",

 "quantity":1,

 "id":"Bom1",

 "parentId":"",

 "children":[

 {"partNumber":"part2",

 "quantity":2,"id":"Bom2",

 "parentId":"","children":[

 {"partNumber":"part4",

 "quantity":4,

 "id":"Bom4",

 "parentId":""

 },

 {"partNumber":"part5",

 "quantity":5,

 "id":"Bom5",

 "parentId":""

 }

]

 },

 {"partNumber":"part3",

 "quantity":3,

 "id":"Bom3",

 "parentId":""

 }

]

}

Sample Return

{"partNumber":"part1","quantity":1,"id":"Bom1","parentId":"",

 "children":[

 {"partNumber":"part2","quantity":2,"id":"Bom2","parentId":"Bom1"},

 {"partNumber":"part3","quantity":3,"id":"Bom3","parentId":"Bom1"},

 {"partNumber":"part4","quantity":4,"id":"Bom4","parentId":"Bom2"},

 {"partNumber":"part5","quantity":5,"id":"Bom5","parentId":"Bom2"}

]

}

 26

CONVERT A FLATTENED BOM TO HIERARCHICAL BOM FUNCTION

convertbomtohier

Description The convertbomtohier function converts a flattened BOM into a hierarchical BOM.
Occasionally, administrators flatten hierarchical BOMs for easier processing; this function
returns the processed flattened BOM back into a hierarchical BOM.

Parameter bomJson JSON data type Use this parameter to hold the JSON target.

Syntax Json convertbomtohier(Json bomJson)

Sample
Input

bomJson {"partNumber":"part1","quantity":1,"id":"Bom1","parentId":"",

 "children":[

 {"partNumber":"part2","quantity":2,"id":"Bom2","parentId":"Bom1"},

 {"partNumber":"part3","quantity":3,"id":"Bom3","parentId":"Bom1"},

 {"partNumber":"part4","quantity":4,"id":"Bom4","parentId":"Bom2"},

 {"partNumber":"part5","quantity":5,"id":"Bom5","parentId":"Bom2"}

]

}

Sample
Return

{"partNumber":"part1","quantity":1,"id":"Bom1","parentId":"",

"children":[

 {"partNumber":"part2","quantity":2,"id":"Bom2","parentId":"",

 "children":[

 {"partNumber":"part4","quantity":4,"id":"Bom4","parentId":""},

 {"partNumber":"part5","quantity":5,"id":"Bom5","parentId":""}

]

},

{"partNumber":"part3","quantity":3,"id":"Bom3","parentId":""}

 27

CONFIGURATION WEB SERVICE TO SUPPORT BOM MAPPING

This release introduces the optional bomprice element to the Configuration web service (v1 and v2).

The response includes the BOM price for sites using BOM Mapping if the BOM price is not zero.

Sample Response:
<bm:price>

 <bm:bomPrice>$16.0000</bm:bomPrice>

 <bm:totalPrice>$45.0000</bm:totalPrice>

</bm:price>

The web service WSDL, upon regeneration, includes the newly introduced "bomPrice" optional element:

<xsd:complexType name=" ">

 <xsd:sequence>

 ...

 <xsd:element maxOccurs="1" minOccurs="0" name="bomPrice" nillable="true"

type="xsd:string"/>

 <xsd:element maxOccurs="1" minOccurs="1" name="totalPrice" nillable="false"

type="xsd:string"/>

 </xsd:sequence>

</xsd:complexType>

STEPS TO ENABLE

BOM Mapping is available on all 2016 R1 sites. Refer to the BOM Implementation Guide, available on

My Oracle Support, for detailed instructions.

The following items outline setup activities:

1. Capture BOM item definitions in CPQ Data Tables.

2. Activate BOM tables per business requirements.

3. Map BOM Data Tables to BOM platform tables.

4. Resolve validation errors that occur during set up.

5. Build Configuration rules to associate BOM items and attributes to CPQ Configuration and
Commerce.

https://support.oracle.com/

 28

TIPS AND CONSIDERATIONS

 Administrators can use Data Table Import or Bulk Upload to import BOM Data Tables.

 Favorites and Shopping Cart features do not support BOM Mapping.

NOTE: BOM Mapping integrates with CPQ Configuration to employ and merge BOM items and

attributes. Therefore, CPQ Configuration setup is required prior to BOM Mapping Implementation.

NOTE: This document does not cover fulfillment system integration, such as with the Oracle eBusiness

Suite (EBS). Refer to the CPQ-EBS Integration Implementation Guide for implementation instructions.

KEY RESOURCES

Refer to the following resources for additional information:

 BOM Mapping Implementation Guide: Provides detailed information about how to
implement the BOM Mapping feature available in the 2016 R1.

 CPQ Cloud Online Help: Refer to the BOM Mapping topics.

 CPQ-EBS Integration Implementation Guide: Provides detailed information for integrating
Oracle eBusiness Suite (EBS) to CPQ Cloud.

https://support.oracle.com/epmos/faces/DocumentDisplay?id=1674718.1
https://support.oracle.com/epmos/faces/DocumentDisplay?_afrLoop=489213601970654&id=1991064.1&_afrWindowMode=0&_adf.ctrl-state=16e26aoy9_529

 29

SUBSCRIPTION ORDERING

Companies use Subscription Ordering, sometimes known as asset-based ordering, to sell tangible assets

or subscriptions for services delivered over a period of time. The Subscription Ordering feature in CPQ

Cloud 2016 R1 supports subscription and asset-based products by recording fulfilled lines as assets and

providing customers with robust subscription management tools to address future-dated modifications

and generation of follow-on orders.

With the following features, administrators can provide sales users with the ability to review, modify,

and renew subscription or asset-based products. When used together, these features provide the

functionality and guidance needed to successfully implement a CPQ Cloud 2016 R1 Subscription

Ordering solution.

 BOM Mapping Rules: Enable Subscription Ordering by setting up BOM Mapping Rules to
associate Bills of Material with CPQ Configuration attributes.

 REST APIs: Create, query, or modify assets using REST APIs. For additional information, refer
to the REST APIs section of this document.

 Customer Assets Page: Display, search, and administer assets based on the order request
date.

 Local Asset Repository: Store asset information locally in the CPQ Cloud repository.

 Asset-Based Ordering Package and Implementation Guide: Use the Asset-Based Ordering
(ABO) Package and the steps outlined in the Asset-Based Ordering Implementation Guide as
reference materials for implementing a complete subscription management solution.

ASSETS

With the implementation of Subscription Ordering CPQ Cloud creates and submits orders for the

fulfillment of subscription products. When these products are fulfilled, the fulfillment system can invoke

a CPQ Asset API to create an asset in the CPQ asset repository. Once created, assets can be viewed by

sales users on the new Customer Assets page. Sales users can also modify or terminate assets and

services, by placing subsequent Commerce transaction orders to modify or terminate the asset.

Add Subscription Ordering attributes, functions, and other elements to your Commerce Process by

migrating the Asset-Based Ordering Package or manually adding them as described in the CPQ Cloud

Asset-Based Ordering Implementation Guide.

 Instance Id: Provides the universal asset instance identifier generated during asset creation.

 Instance Name: Displays the user-friendly name or identifier for an asset, such as a cell
phone number.

 Action: Identifies the action to be performed on the asset for the transaction line. The
action options include Add, Delete, Update, Terminate, and “–” (represents no change).
Action codes can be displayed to sales users for their confirmation of the changes to be
made.

 Request Date: Provides the requested date for the transaction line. Customers can enter
future dates. If a request date is not provided, the current date is used.

 30

 Fulfillment Status: Identifies the fulfillment status for the transaction line. The status
options include Created, Being Fulfilled, Fulfilled, and Cancelled.

 Attributes Summary: Stores BOM attribute name-value pairs for the current transaction line
during asset creation and updates.

NOTE: The Asset-Based Ordering package contains the attributes required to implement Subscription

Ordering. Administrators are responsible for adding the attributes to their Commerce UI Layouts.

CUSTOMER ASSETS PAGE

The Customer Assets page is a new pre-defined page that displays to sales users the assets associated

with a transaction’s Customer Account ID. The Customer Assets page provides the ability to view

purchased, modified, and terminated assets; and to search, filter, and sort assets. The new UI Designer

feature introduced in CPQ Cloud 2016 R1 can be used to customize the Customer Assets page.

To access the Customer Assets page, open a quote, select a customer, and click Customer Assets.

 Figure 18: Customer Assets Page

NOTE: The Customer Assets page displays active assets based on the request date associated with the

current order. The page does not display assets scheduled to start on a later date.

For example: Assume a customer adds a sports network to their cable service on Aug. 1. This creates

Asset 1 with a future request date of Aug 1. The customer then calls back the next day and adds a

cooking network to their cable service on July 1, which is order 2. The Customer Assets page does not

display Asset 1 on the second order, which has a request date of July 1. The Customer Assets page only

displays Asset 1 for orders with Aug. 1 or later as the request date.

 31

ASSET CREATION

The Update Assets action provided in the ABO Package supports the creation and modification of an

asset. Asset creation generates a traceable item that integrates with your fulfillment system. After asset

creation, customers can view and maintain subscription services through transactions.

For example: When a Sales Representative uses Commerce to add relevant products to a transaction,

the transaction lines display a status of ‘Created’. When the transaction is submitted as an order to the

fulfillment system, the status of the transaction line changes from “Created” to “Being Fulfilled”. When

the order is fulfilled in the back-end system, the fulfillment system notifies CPQ Cloud in an integration

flow. The transaction lines status then changes from “Being Fulfilled” to “Fulfilled” and the asset is

recorded in the CPQ local asset repository.

Figure 19: Sample Order for Asset Creation

ASSET MODIFICATION

Asset modification allows customers to modify fulfilled assets, with the option to modify at a future
date.

Complete the following steps to modify an asset:

Create a transaction and select the request date for the modification.

1. Navigate to the Customer Assets page.

 Open the CPQ Commerce Transaction UI.

 Click Customer Assets.

2. Select the appropriate asset, and click Modify.

The Configuration page appears.

3. Make the appropriate revisions and update the current transaction.

The following asset modification options are available from the Customer Assets page:

 Add a new component to the projected asset, excluding requests with future start dates.

 Delete a component from an asset.

 Update an asset component through actions such as BOM attribute changes.

NOTE: A hyphen (–) displays for lines without updates.

 32

RECONFIGURE

Use the Reconfigure action to update a quote prior to fulfillment. Reconfigure compares the projected

asset with a reconfigure order line to reflect user-intended net changes in a subscription or asset.

Pending update order lines that occur before the reconfigure requested date are included in the

comparison. Pending order lines have one of the following conditions:

 The item is “Being Fulfilled” in another order.

 The item is “Being Fulfilled” or “Created” in the current order.

FOLLOW-ON ORDERS

A Follow-On Order is a change to an existing order that has not yet been fulfilled. When a follow-on
order is created, Subscription Ordering automatically creates the action codes for each transaction line
based upon the difference between the expected state of the asset on the request date and the new
configuration.

ASSET TERMINATION

Use the Terminate action on the Customer Assets page to end a subscription. For example: Assume a

customer terminates a cable television subscription. The Sales Representative can create a Commerce

transaction for the customer and specify the request date for the termination. When CPQ Cloud displays

the Customer Assets page, the sales user can select the asset to be terminated, and click the Terminate

action. The transaction is displayed in Commerce with the appropriate action codes to terminate the

subscription. When the Terminate action completes, the end date of the asset becomes the date the

customer requested the subscription termination.

STEPS TO ENABLE

Refer to the Asset-Based Ordering Implementation Guide for detailed instructions on how to implement

this feature.

KEY RESOURCES

Refer to the following resources for additional information:

 BOM Mapping Implementation Guide: Provides detailed information about how to
implement the BOM Mapping feature available in the 2016 R1.

 CPQ Cloud Online Help: Refer to the Subscription Ordering and BOM Mapping topics.

 Asset-Based Ordering Implementation Guide: Provides detailed information about how to
use and implement Subscription Ordering.

 Asset-Based Ordering Package

https://support.oracle.com/epmos/faces/DocumentDisplay?id=1674718.1
https://support.oracle.com/epmos/faces/DocumentDisplay?id=1674718.1

 33

CONTRACT NEGOTIATION

The Contract Negotiation feature available in CPQ Cloud 2016 R1 supports the negotiation of a contract

with a customer by integrating CPQ Cloud document handling with the track changes features of

Microsoft Word. Enhancements to CPQ Document Designer and new REST services provide the

capability to compare and merge contracts, highlight differences in two versions of a contract, and

accept or reject specific changes made by customers or internal organizations such as legal.

Administrators can leverage these capabilities to implement a highly customizable Contract Negotiation

solution.

The 2016 R1 Contract Negotiation functionality is described below:

 Use a Single-Language Document Designer template to create a contract.

 Capture versions of the contract that have been modified by customers or internal
reviewers.

 Generate a list of differences between documents created from the same Document
Designer template using the DOCX Compare REST API.

 Filter the list of differences between document versions and merge approved changes into a
new document version using the DOCX Merge REST API.

NOTE: Available in 2016 R1, administrators can use Microsoft Word to track changes in .DOCX output

files and integrate with DocuSign to allow customers to electronically sign and approve documents.

For additional information, refer to the Document Designer Enhancements addressed later in this

document.

ENABLE CONTRACT NEGOTIATION

By default, the Contract Negotiation feature in CPQ Cloud 2016 R1 is disabled. When the feature is

enabled, a Contract checkbox is available when creating new Document Designer templates as well as in

the Document Properties pane of existing templates.

Complete the following steps to enable Contract Negotiation:

1. Click Admin to go to the Admin Home page.

2. Click General Site Options in the General section.

The Options-General page appears.

3. Set the Enable Contract Generation in Document Designer option to Yes.

 34

CREATE CONTRACT FROM SINGLE-LANGUAGE TEMPLATE

Begin using the 2016 R1 Contract Negotiation feature by selecting a single-language Document Designer

template to use as a contract template.

Complete the following steps:

1. Navigate to Document Designer.

 Click Admin to go to the Admin Home page.

 Click Document Designer in the Commerce and Documents section.

2. From the Document Designer Templates page, select a single-language Document Designer
template to use as a contract template.

3. From the Document Properties panel, select the Contract checkbox.

With the exception of the spacer element, the page element, and the column break element, all

Document Designer elements are identified in the .DOCX output file as clauses.

NOTE: The name associated with each element becomes the clause name, which is later used to identify

differences between document versions.

CAPTURE VERSIONS OF THE CONTRACT

Administrators can define CPQ Commerce file attachment attributes to capture each version of a

contract required to support their specific workflow. Administrators can link these attributes to actions

to compare and merge contract versions and expose these actions to the sales user in CPQ Cloud

Commerce workflows.

GENERATE LIST OF DIFFERENCES BETWEEN DOCUMENT VERSIONS

The ability to generate a list of differences between document versions is supported by the DOCX

Compare REST API. The API identifies differences in all elements except headers, footers, and heading

styles.

For example: When a Sales Representative sends a contract to a customer, the customer reviews the

contract and can either approve the contract or make modifications to the contract. When the latter

occurs and the customer sends the modified contract back to the Sales Representative, the DOCX

Compare REST API compares the clause tags in the original contract and the modified contract. During

this comparison, the DOCX Compare REST API identifies updated content within clause tags and deleted

content within clause tags and returns a list of differences.

NOTE: Generating a list of differences between two .DOCX files created from different single-language

Document Designer templates is not supported by the DOCX Compare REST API. For additional

information about the REST API, refer to the REST API section of this document.

 35

MERGE APPROVED CHANGES

The ability to merge approved changes into a .DOCX contract document is supported by the DOCX

Merge REST API.

For example: When a contract modified by a customer is uploaded into CPQ Cloud by a Sales

Representative, the Sales Representative can view the edited contract, approve and reject changes

made by the customer, and then merge and apply the approved changes to the finalized contract. The

DOCX Merge REST API supports this activity by merging the approved changes into a target document.

NOTE: For additional information about the DOCX Merge REST API, refer to the REST API section of this

document.

TIPS AND CONSIDERATIONS

Consider the following tips when using the new Contract Negotiation feature:

 Verify that the types of changes made to contracts in your standard workflow will be
correctly handled in your test or development environment, before enabling the Contract
Negotiation feature in production. Modifications may be necessary to contract Document
Designer templates to refine your contract negotiation process and assure that it will
address your requirements.

 Multi-language Document Designer templates are not supported as contract templates. The
Contract checkbox in the Document Properties pane of Document Designer is only available
for single-language templates.

 Clause names are hidden tags that do not appear when users preview or print a .DOCX
output file. To view clause names when previewing or printing a .DOCX output file, un-check
the Hide option in Microsoft Word.

 Background images and header and footer changes are not considered when comparing or
merging documents.

KEY RESOURCES

Refer to the following resources for additional information:

 Contract Negotiation Implementation Guide: Provides detailed information about how to
use the two Contract Negotiation APIs available in the 2016 R1 release to create a
customized Contract Negotiation solution.

 CPQ Cloud Online Help: Refer to the Document Designer and REST API topics.

https://support.oracle.com/epmos/faces/DocumentDisplay?id=1674718.1

 36

SECURE DATA TABLE COLUMNS

In this release, Oracle CPQ Cloud is introducing a secure data type option for new columns in both new

and existing Data Tables. Confidential client credentials are required to connect to PaaS applications and

other external systems. Secure Data Table Columns provide a method for securely storing confidential

credentials in CPQ Cloud. Secure columns always store the encrypted form of the data in the Data Table.

The only way to access this data in its original, decrypted form is through BMQL.

The content in non-secure columns is in a decrypted (not encrypted) format. Data in secure columns is

decrypted, masked, or encrypted dependent upon the context. The following examples display how

“Password” appears for the different formats:

 Figure 20 displays a CSV file for import with decrypted data in SecureColumn.

 Figure 20: Decrypted Data

 Figure 21 displays a Data Table with masked data in SecureColumn.

 Figure 21: Masked Data

 Figure 22 displays an exported CSV file with encrypted data in SecureColumn.

 Figure 22: Encrypted Data

 37

INCOMING DATA FORMAT FOR SECURE COLUMNS

The following table lists the expected incoming data format to create or update data in secure columns.

Incoming Data Format Encrypted Decrypted

Admin UI Table Editor

Import via Admin UI

*Bulk Upload (see note)

Web Services

Package Upload

OUTPUT DATA FORMAT FOR SECURE COLUMNS

The following table shows the secure column data output for various CPQ functions.

Output Data Format Masked Encrypted Decrypted

Admin UI Table Editor

Export via Admin UI

*Bulk Download (see note)

Web Services Get API

Web Services Add/Update APIs

Package Download

Jython

Objects

bmql() select fields

* NOTE: When a Data Table with a secure column is downloaded using a bulk download and the same

content is then uploaded using a bulk upload, values are double encoded and result in changed values.

 38

SECURE COLUMN DATA USAGE

Secure column data is not available for the following uses:

 Formulas: query() conditions

 Formulas: query() return column

 Table-Based rules: filter column

 Table-Based rules: Constraint message

 Table-Based rules: Constraint value

 Table-Based rules: Recommendation message

 Table-Based rules: Recommendation value

 Table-Based rules: Recommended item properties

If secure columns are referenced, the following BML statements generate errors:

 gettabledata() select fields

 gettabledata() where fields

 bmql() order by fields (dynamic)

 bmql() where fields (dynamic)

If a BML script contains one of the following BMQL statements with secure column references, errors

are generated during a save:

 bmql() order by fields (static)

 bmql() where fields (static)

Web services criteria for Get and Delete APIs return a SOAP fault.

ADDING A SECURE COLUMN TO A DATA TABLE

1. Navigate to the Data Table Administration page.

 Click Admin to go to the Admin Home page.

 Click Data Tables in the Developer Tools section.

2. Open an existing Data Table. For instructions on creating a new Data Table, refer to the Data
Tables “Manually Adding a Table” topic in CPQ Online Help.

3. Click the Schema tab in the right panel of the Data Table Administration page.

NOTE: The Secure Data Type is only available for new columns. The Secure Data Type option is

not available when modifying existing columns.

4. Click Add Column to add a new Data Table column.

The New Column dialog box appears.

 39

Figure 23: Data Table Column Secure Data Type

5. Enter a Column Name and Description.

NOTE: Column names can only contain alphanumeric characters and underscores. White space

characters are not allowed.

6. Select the Secure from the Data Type drop-down menu.

7. Click Add Column to save the column.

STEPS TO ENABLE

Secure Data Table Columns are automatically available on all 2016 R1 sites.

TIPS AND CONSIDERATIONS

Consider the following tips when using the Secure Data Table Column feature:

 Data Tables can only have 50 string (text) columns. Secure columns count against that
number. If a Data Table already has 50 text columns, administrators cannot add a secure
column, without removing one of the text columns.

 Querying Secure Data Table Columns for Dynamic Pick Lists returns encrypted data.

KEY RESOURCES

CPQ Cloud Online Help: Refer to the Data Table topics.

 40

EASY ADMINISTRATION

Administrators are the main force behind keeping a CPQ Cloud site up-to-date. Designed to make

administration even easier, the CPQ Cloud 2016 R1 release includes new functionality in the following

areas:

 Single Select Pick Lists in Configuration

 UI Designer

 BML Enhancements

 Document Designer Enhancements

 Long Running Thread Diagnostics

SINGLE SELECT PICK LISTS IN CONFIGURATION

As part of continuous improvements to Single Select Pick Lists, the following new features are available

in CPQ Cloud 2016 R1.

 Apply hiding rules to a Single Select Pick List attribute

 Use the Related Rules tab to find references made from a Single Select Pick List

 Display a Single Select Pick List as an image grid

 Use an array set as the source of Single Select Pick List data

APPLY HIDING RULES TO A SINGLE SELECT PICK LIST ATTRIBUTE

In CPQ Cloud 2016 R1, administrators can apply hiding rules to Single Select Pick List attributes. Hiding

rules consist of a condition and an action and are used in CPQ Cloud to hide select attributes when a

pre−defined condition is met. Administrators can use Single Select Pick List attributes as the action for a

hiding rule. However, Single Select Pick List attributes cannot be used as a condition for a hiding rule.

 41

Use the Hiding Rule: New Rule page to define a hiding rule that uses Single Select Pick List attributes as

the action. When the condition specified by the administrator is met, this triggers the hiding of the

Single Select Pick List attributes (i.e. the action attributes) selected by the administrator.

Figure 24: Hiding Rule: New Rule Page

NOTE: Single Select Pick List attributes are only available for selection in the Action: (Define Attributes

To Hide) area of the Hiding Rule: New Rule page. They are not available for selection in the Condition

area of the page. If a hiding rule contains a Single Select Pick List, the Add Associated Recommendation

Rule functionality is not available.

USE RELATED RULES TAB TO FIND REFERENCES MADE FROM A SINGLE SELECT PICK LIST

The Related Rules tab is used to view all of the rules that reference a particular attribute. The tab

displays the name of the rule, the level of the rule within the hierarchy, the rule type, and the rule

components. As shown below in Figure 25: Related Rules Tab, administrators can now use the Related

Rules tab to find references made to the current attribute from a Single Select Pick List.

Figure 25: Related Rules Tab

 42

Descriptions of each of the columns in the Related Rules tab are provided below:

 Label: The list of rules with which the attribute is associated.

 Level: The level of the rule within the product hierarchy (e.g. All Products, Product Family,
Product Line, Model).

 Rule Type: The type of rule. The Single Select Pick List rule type is new in CPQ Cloud 2016 R1
and identifies references to the attribute from a Single Select Pick List.

 Components: The rule’s component, which uses this particular attribute. When Single Select
Pick List is the Rule Type, this column identifies whether the reference is part of a filter for
the Single Select Pick List or a pick map from the Single Select Pick List.

DISPLAY A SINGLE SELECT PICK LIST AS AN IMAGE GRID

In CPQ Cloud 2016 R1, an administrator can display a Single Select Pick List attribute as an image grid. In

prior releases, Drop−down Menu was the only available display type for Single Select Pick List attributes.

To display Single Select Pick List attributes as an image grid:

1. Navigate to the Configuration Attributes Administration List page.

 Click Admin to go to the Admin Home Page.

 Click Catalog Definition in the Products section.

The Supported Products page appears.

 In the Navigation column, select Configuration Attribute and then click List.

The Configuration Attributes Administration List page appears.

2. Click the name of an attribute that has Single Select Pick List in the Attribute Type column, or
create a new attribute.

The Menu Attribute Editor page appears.

3. Set the Image Menu option to Yes.

4. Select Grid as the Display Type.

Figure 26: Menu Attribute Editor

 43

The following example shows how Single Select Pick List attributes as image grids display to the end
user.

Figure 27: Single Select Pick List Attributes Displayed as Image Grids

Use the Filter text box on the Menu Attribute Editor to apply a filter to a Single Select Pick List attribute.

When a filter is applied to a Single Select Pick List attribute and the filter value changes, the associated

Single Select Pick List Image Grid dynamically changes based on the filter value.

NOTE: The size of the Filter text box now supports 4000 characters. In previous releases, the Filter text

box supported 128 characters. For information about the syntax to use when applying a filter, refer to

the Filters topic in the CPQ Cloud Online Help.

 Figure 28: Filter Text Box on the Menu Attribute Editor

 44

USE ARRAY SET AS SOURCE OF SINGLE SELECT PICK LIST DATA

Administrators can now select an array set as the source of Single Select Pick List data. In prior releases,

Data Tables were the only available source of Single Select Pick List data. By selecting an array set as the

domain, the array attributes are used as the Single Select Pick List options. In Figure 29: Configurable

Array Set Editor, Search Flow Array is the name of the array set and the attributes shown in the

Associated Attributes field are the array attributes.

Figure 29: Configurable Array Set Editor

 45

Use the Domain field in a Single Select Pick List attribute’s editor to select an array set or a Data Table to

use as the source of the data. As shown in Figure 30: Attribute Editor, the Domain drop-down menu

contains a list of Data Tables and array sets. The array sets are listed prior to the Data Tables, each of

which is shown in alphabetical order. There is no displayed separator between the two collections of

data sources.

NOTE: Data Tables in the Domain field now display as the actual name of the Data Table. In prior

releases, the name of each Data Table contained the prefix “custom” followed by the name of the Data

Table.

Figure 30: Attribute Editor

 46

When an array set is selected from the Domain drop-down menu, the Variable, Display, and Picker

Attribute fields automatically populate with all of the array attributes in the array set. The options in the

Model Attribute field are automatically populated after the administrator selects an array attribute

from the Picker Attribute drop-down menu.

NOTE: Filtering is not supported for array set Domains. Upon selecting an array set as the Domain, the

filter is cleared and is not recoverable.

Figure 31: Attribute Editor

TIPS AND CONSIDERATIONS

Consider the following tips when using the new Single Select Pick List features:

 If the data in the Display or Variable name column is empty or specified as “null” in the Data
Table, then pick maps do not work correctly. Single Select Pick maps will display “null” for
empty values.

 When a Data Table contains a column name of “class” or “null”, an administrator can use
the Data Table but cannot use the column. On the user side, Data Table columns named
“class” or “null” break in Configuration.

 Numeric Configuration attributes used in a Single Select Pick List filter are now validated
when the attribute focus is lost, which occurs when a user clicks away or uses the Tab key to
go to the next attribute on the page. In previous releases, numeric Configuration attributes
(e.g. integer or float) were not validated until the Configuration was saved or updated.

 In previous releases, Single Select Pick List Configuration attributes only showed the Display
value in the pipeline viewer while Commerce showed both the Display value and the
Variable name “Label[varname]" for similar attributes. In 2016 R1, Configuration now
follows the same pattern as Commerce for its pipeline viewer for all Configuration attribute
types.

KEY RESOURCES

CPQ Cloud Online Help: Refer to the Single Select Pick List topic.

 47

UI DESIGNER

UI Designer is a new drag and drop editor that provides administrators with a simple and intuitive way

to edit the new Oracle Application Development Framework (ADF) pages within CPQ Cloud. Oracle ADF

is an end-to-end framework that simplifies application development by providing out-of-the-box

infrastructure services and a faster and simpler development experience.

Introduced in CPQ Cloud 2016 R1, UI Designer provides a way to administer pre-defined layouts using

the following functionality:

 Layouts List Page

 UI Designer Screen Layout

 Layout

 Attributes

 Layout Settings

 Panel Settings

 Table Settings

 Column Settings

 Button Settings

LAYOUTS LIST PAGE

The Layouts List page contains the two pre−generated ADF user interface layouts available in CPQ Cloud

2016 R1 (Customer Assets List and Performance Logs List). Administrators can customize these layouts

to meet the needs of their organization.

Figure 32: Layouts List Page

Administrators can access the Layouts List page from the Admin Home Page by selecting UI Designer in

the General Settings section. Use the Layouts List page to click the name of the pre−generated layout

you want to customize. This opens the layout in UI Designer.

 48

UI DESIGNER SCREEN LAYOUT

UI Designer contains a drag and drop interface that allows administrators to easily customize the two

pre−generated ADF layouts available in CPQ Cloud 2016 R1. These layouts are shown below in Figure 33:

Customer Assets List and Figure 34: Performance Logs List.

By clicking content in the layout such as the column or panel heading outlined in red in Figure 33:

Customer Assets List, administrators can view and modify the associated settings. Tooltips with useful

hints about the settings are viewable by hovering over the settings with your mouse.

Figure 33: Customer Assets List

Figure 34: Performance Logs List

 49

LAYOUT

The Layout panel contains basic components used to create the layout. Drag and drop the desired

components onto the content area to place the component in the layout.

Figure 35: Layout Panel

NOTE: In CPQ Cloud 2016 R1, only one panel and one table is supported per layout.

ATTRIBUTES

The Attributes panel contains a list of object attributes that are available to add into the selection in the

content area. Drag and drop an attribute onto the table to add it as a column.

NOTE: The attributes in the Attributes panel are only available when the table is selected. If the table is

not selected, no attributes display in the panel.

Figure 36: Attributes Panel

 50

To remove a column, select the column, and click the remove icon located to the immediate right of the

icon. In Figure 37: Remove a Column, the remove icon is outlined in red.

Figure 37: Remove a Column

LAYOUT SETTINGS

Use Layout Settings to customize the Name, Description, Parameters, and Category associated with a

layout. Instructions for each of the Layout Settings are provided below and are available as Tooltips by

hovering over the settings with your mouse.

 Figure 38: Layout Settings

NOTE: The Name, Description, and Category values are viewable from the Layouts List page.

 Name: Enter a unique identifier for the layout.

 Title: Enter a title to display in the browser tab or header.

 Description: Enter a description of the content or purpose of the layout.

 51

 Parameters: Use the Layout Parameters dialog to add, modify, or delete the parameters
associated with a layout. The Layout Parameters dialog can contain default values that are
already defined, but they are primarily defined through parameters that are passed through
a URL.

 Figure 38: Layout Parameters

 Category: Select a category or create a new category for organizing the layout on the
Layouts List page.

 Figure 39: Layout Settings

 52

PANEL SETTINGS

Use Panel Settings to customize the Title, Help Text, Help URL, Tooltip, or Icon Set associated with a

panel. A sample panel is outlined in red and shown below.

Figure 40: Sample Panel

Descriptions of each of the Panel Settings are provided below.

 Title: The title displayed in the upper−left of the panel. In Figure 40: Sample Panel, Customer
Assets is the title.

 Help Text: The instructional text that displays upon hovering over the Help icon with your
mouse.

 Help URL: The URL of the page that opens upon clicking the Help icon.

NOTE: If no content is entered in the Help Text or Help URL fields, a Help icon does not display

on the panel.

 Tooltip: The short message that displays upon hovering over any part of the panel.

 Icon Set: The icon that displays in the upper−left of the panel next to the title. An icon set on
a panel only displays in the Enabled state. The behavior of an icon set on a panel is static in
comparison to how an icon set functions on a button.

 Figure 41: Panel Settings

 53

TABLE SETTINGS

The Customer Assets List layout and the Performance Logs List layout are both displayed in a table

format. Use Table Settings to make customizations to these tables, including enabling the freeze column

feature on the table, adding row numbering, and changing the default column width.

Descriptions of each of the Table Settings are provided below.

 Summary: Enter a summary of the contents of the table. This is an important step for
creating accessible layouts.

 Resource: Select the object to use for defining the contents of the table. The available
options include Assets and Performance Logs.

NOTE: For additional information about assets, refer to the Subscription Ordering section of this

document. For additional information about performance logs, refer to the CPQ Cloud Online Help.

 Resource Query Filter: Define a filter to apply to the selected object.

 Tooltip: Enter a short message to display upon hovering over the table.

 Expanding Column: Select a column to fill extra space in the table.

 Height (In Rows): Specify the number of rows to display in the table for the height. As the
user scrolls down, additional rows will display.

 Allow Freeze Columns: Check the Allow Freeze Columns checkbox to display a Freeze
button in the table’s toolbar, so users can freeze or un-freeze columns. Selecting and
freezing a column creates a horizontal scroll bar to the right of the frozen column.

 Row Numbering: Check the Row Numbering checkbox to display row numbering for each
row in the table. As the user scrolls, additional rows become available.

 Figure 42: Table with Row Numbering and Column Freeze Enabled

 54

COLUMN SETTINGS

Use Column Settings to modify a column label, show or hide a column, and add or modify the label, URL,

and any specified parameters associated with a column. Descriptions of each of the Column Settings are

provided below.

 Label: The column label to display in the column header.

 Resource Attribute: Displays the object attribute associated with the column (e.g. the
attribute that was dragged from the Attributes panel to a table to create the column).

 Data Type: Displays the data type associated with the object attribute.

 Show: Select the checkbox to display the table column to end users by default.
End users then have the option to hide or display the column.

 Navigation: Select a URL to associate with the column.

 Operation: Select the operation to assign to the column.

 Help URL: Enter the text or the URL to display upon clicking the Help icon.

 Figure 43: Column Settings

 55

BUTTON SETTINGS

Use Button Settings to specify a Label, Navigation option, Operation, Tooltip, and Icon Set for a button.

Descriptions of each of the Button Settings are provided below.

 Label: Enter a label to display on the button.

 Navigation: Select a URL to associate with a button. When the button is clicked, the
specified URL opens.

 Operation: Select an operation to assign to the button.

 Tooltip: Enter a short message to display upon hovering over the button.

 Icon Set: Associate a button with an icon set. Each icon set has an Enabled, Disabled, and a
Hover state as well as an Active state for when the button associated with the icon set is
clicked.

 Hide Label: Hides the text label assigned to a button and renders the button as icon-only.

NOTE: When an icon set is assigned to a button, the “Hide Label” option is available on the Button

Settings panel.

Figure 44: Button Settings

 56

TIPS AND CONSIDERATIONS

Consider the following tips when using UI Designer:

 Only one panel per layout is currently supported. When an administrator attempts to drag
and drop an additional panel onto a layout, the layout is not updated with the additional
panel.

 When defining a Help URL or Navigation URL, use http:// or https:// at the beginning of
external links. Otherwise, the path is assumed internal within the CPQ Cloud page. If only an
end-point such as /commerce/display_company_profile.jsp is entered, the CPQ domain is
automatically added to make the entire URL
[site].oracle.com/commerce/display_company_profile.jsp.

 As a recommended good practice, make the layout parameters used in a Resource Query
Filter mandatory, especially if the parameter type is not text. Otherwise, the Resource
Query Filter evaluation may fail, resulting in a runtime error when attempting to load the
page.

 Icon sizes on buttons are constrained to 16 x 16 pixels. While it may appear that the icon
size is constrained on panels as well, the images will display to the end user in the icon’s
unrestricted size. When defining an image for an icon set, make sure the image size is
correct in File Manager.

 Not all of the attribute types available on the Customer Assets List layout or the
Performance Logs List layout are supported. For example: An administrator can add
Currency and Currency Code attributes to the Customer Assets List layout, but the
attributes do not display values for the end user.

KEY RESOURCES

CPQ Cloud Online Help: Refer to the UI Designer topics.

 57

PERFORMANCE LOGS PAGE

The new Performance Logs page, available in CPQ Cloud Release 2016 R1, allows administrators to
monitor and analyze the performance experienced by CPQ Cloud sales users. The page leverages the
Performance Logs REST API delivered by CPQ Cloud in Release 2015 R1, and the new UI Designer, to
deliver improved access and usability to performance log data.

Access the Performance Logs page from the Admin Home Page by selecting Performance Logs in the
Developer Tools section.

Figure 45: Performance Logs

The page allows administrators to view user actions such as Logins, Logouts, Commerce and
Configuration actions, with the elapsed server and browser times required to complete the actions. Click
a column header to select it and enable ascending and descending sorting of the column’s content. Hide
or reveal the columns displayed in the table using the View menu. Users can resize and rearrange
columns to customize their view.

QUERY BY EXAMPLE (QBE)

Filter logged events using the new Query by Example (QBE) feature, which is available on UI Designer
generated pages. Click the filter icon to enable the query fields, and then enter filter criteria. Press enter
to activate the filter. Filter results across multiple columns in this manner. Click the pencil eraser icon,
on the left side of the QBE row, to clear the filter.

Figure 46: Query by Example (QBE)

KEY RESOURCES

CPQ Cloud Online Help: Refer to the Performance Logs and UI Designer topics.

 58

BML ENHANCEMENTS

CPQ Cloud’s markup language, BML, now allows administrators to create new Java Script Object

Notation (JSON) data types (e.g. JSON, JSON array, and JSON null) and generate, modify, parse, extract,

and query JSON data using BML JSON and JSON array manipulation functions. The addition of JSON Path

expression in JSON manipulation functions allows advanced users to easily retrieve or modify a node or

value in JSON data. Available in CPQ Cloud 2016 R1, these BML enhancements support Bill of Material

(BOM) and Subscription Ordering.

Additional information about the 2016 R1 BML enhancements is provided below:

 JSON Related Functions

 JSON Array Related Functions

 JSON Path Related Functions

 Functions to Support Remote Approvals

 Generate Unique IDs Function

 URL Access Function

 Same Server Authentication

 User Session Functions

 Global Dictionary Functions

 Throw Error Function

 Apply Template Function

 BML Print Log

 59

JSON RELATED FUNCTIONS

The following are JSON-related functions introduced in CPQ Cloud 2016 R1.

JSON Function Description

json(): Creates a JSON object.

jsonkeys(): Retrieves all first-level keys from a JSON object and returns an array of strings.
If the optional parameter (ignoreNullValues) is set to true, null value keys are
ignored.

jsontostr(): Converts a JSON object into a JSON formatted string.

jsonget(): Gets the value from the JSON object for the key provided. If the key is not available,
the value provided in the default Value parameter is returned.

jsonput(): Puts an entry (key-value) into the JSON object.

jsonremove(): Removes the first-level key-value pair from the JSON object.

jsoncopy(): Returns a copy of the given JSON object.

jsonnull(): Gets an instance of the JSON null object (represents null in the JSON string).

isjsonnull():

Checks the null value in the JSON or JSON array object and returns true if the value is
null.

JSON ARRAY RELATED FUNCTIONS

The following JSON Array-related functions are available in CPQ Cloud 2016 R1.

JSON Array Function Description

jsonarray(): Creates a JSON array object.

jsonarraytostr(): Converts a JSON array object into a JSON array formatted string.

jsonarrayget(): Gets the value from the JSON array object for the index provided.

jsonarraysize(): Returns the size of the JSON array.

jsonarrayappend(): Appends the given value at the end of the JSON array.

jsonarrayremove(): Removes an object specified at given index from the JSON array.

jsonarraycopy(): Returns a copy of the of the given JSON array object.

 60

JSON PATH RELATED FUNCTIONS

The following are JSON-path related functions available in CPQ Cloud 2016 R1.

JSON Path Function Description

jsonpathgetsingle(): Retrieves the value from the JSON object for the given JSON path
expression.

jsonpathgetmultiple(): Retrieves the value(s) and path(s) from the JSON object for the given JSON
path expression.

jsonpathcheck(): A JSON lookup function that checks if the JSON path is found in the JSON.

jsonpathset(): Updates all of the nodes corresponding to a given JSON path expression
with a given value.

jsonpathremove(): Removes the object(s) and value(s) corresponding to a given JSON path
expression.

JSON PATH EXPRESSION

A JSON Path expression is used to represent one or more nodes or values in a JSON structure and is also
used for data filtering and further data insight.

There are two ways to write a simple JSON path expression.

SIMPLE DOT NOTATIONS:

 Generally used when keys are alphanumeric (e.g. contain only numbers and alphabets).

 Each dot notation signifies one level scan. For example: $.id represents the value
corresponding to the first level “id” key.

 JSON paths have a similar use for an n-level deep scan. Example: $.attributes.size
path starts by finding the first level “attributes” key and then goes to the second level “size”
key.

 When double dots(..) are used, this represents a deep scan in the JSON structure. For
example: $..value represents all of the values corresponding to all the “value” keys at any
level in the structure.

 Combine single and double dot expressions to create JSON path expressions. For example:
$..size.value first searches for the entire document and gets all the values
corresponding to “size” keys at any level. Within these values, the values corresponding to
the next level “value” key are then retrieved.

 Whenever an array is encountered while writing a JSON path expression, specify the index
of that array. For example: $.children[0].variableName gets the variable name from
the first child.

 When writing simple JSON path expression, combine dot, double-dots, object, and array
notations to intuitively represent one or more values.

 One JSON path can also represent multiple values. For example: $..label will represent
two different values.

BRACKET NOTATIONS:

 61

 Bracket notations are generally used when keys are not alphanumeric, but the overall
intuition is exactly the same as dot notations.

 For example: $.['attributes'].['size'].['label'],$.['children'][0].['quantity'] Use
the following operators to write complex JSON path expressions.

DOT OPERATORS

 Operators Description

$ The root element that starts all path expressions.

@ The current node within the processed filter.

* Name or numeric wildcard character.

.. Used to search all child nodes. Generates an array of results.

.<name> Single child relation representation.

['<name>' (, '<name>')] Single or many child relation representation.

[<number> (, <number>)] Single or many array index representation.

[start:end] Array range representation.

[?(<expression>)] Boolean filter expression.

Certain functions may be used at the end of a JSON path to perform specific functions using the dot

notation. A few examples are located in the

 62

JSON Path Examples section below. The min(), max(), avg(), and stddev() functions can be used to

evaluate an array of numbers. The length() function can be used to provide the size of an array result.

Boolean filter expressions help reduce a JSON array to a subset of intended values. A typical filter

is $.children[?(@.quantity> 1)] where @ represents the current node being processed. Create more

complex filters with logical operators && and ||. Ensure string literals are enclosed by single quotes:
$.children[?(@.partNumber == 'PT13345')]

Filter expressions support common comparison operators ==, !=, <, <=, >, >=, and the below advanced

operators.

ADVANCED OPERATORS

Operators Description

=~ Left matches regular expression [?(@.name =~ /foo.*?/i)].

in Left side is contained in right. [?(@.color in ['Red', 'Green'])].

nin Left side is not contained in right.

size Left side size is equal to right.

empty Left side is empty.

 63

JSON PATH EXAMPLES

Given the following:

{

 "id": "7345ABCDE",

 "variableName": "BM54888-0",

 "partNumber": "BM54888",

 "quantity": 1,

 "definition": {

 "SequenceNum": 20,

 "ItemId": "EBS56321"

 },

 "fields": {

 "_price_list_price_each": 99.12,

 "line_action_code": "Update"

 },

 "attributes": {

 "size": {

 "value": "Large",

 "label": "Size"

 },

 "instruction": {

 "value": "Leave the package at the door.",

 "label": "Special Instruction"

 }

 },

 "children": [

 {

 "variableName": "BM54888-1",

 "partNumber": "PT13345",

 "quantity": 1

 },

 {

 "variableName": "BMDSK781-4",

 "partNumber": "DSK781-4",

 "quantity": 17

 }

],

 "numericVals": [1, 2, 4, 5.6, 89, 0.05],

 "Special key $$": true

}

 64

JSON Path Description / Output

$.id Get the id.

"7345ABCDE"

$..value Get all the values available at any level.

"Large"

"Leave the package at the door."

$.attributes.size.value Get the value of the attributes - > size.

"Large"

$..size.value Get the value of the size key available at any level.

"Large"

$.children[0] Get the first child.

{"variableName":"BM54888-1",

"partNumber":"PT13345","quantity":1}

$.children[0]..quantity Get the quantity of the first child.

1

$.['id'] Get the id.

"7345ABCDE"

$..['value'] Get all the values available at any level.

“Large"

"Leave the package at the door."

$.['attributes']..['label'] Get all the labels under attributes.

"Size"

"Special Instruction"

$.[' Special key $$ '] Get the value corresponding to given key.

true

$..children[0,1] Get first and second children.

{"variableName":"BM54888-1",

"partNumber":"PT13345","quantity":1}

{"variableName":"BMDSK781-4",

"partNumber":"DSK781-4","quantity":17}

$.children[?(@.quantity> 1)] Get the children whose quantity is greater than 1.

{"variableName":"BMDSK781-4",

"partNumber":"DSK781-4","quantity":17}

$.children[?(@.partNumber ==

'PT13345')]

Get the children whose partNumber is 'PT13345'.

{"variableName":"BM54888-1",

"partNumber":"PT13345","quantity":1}

$.numericVals.avg() Get the avg of numeric values.

16.941666666666666

 65

JSON Path Description / Output

$.numericVals.length() Get the length of the array corresponding to numericVals
key.

6

$.children[?(@.partNumber nin

['PT13345'])].quantity

Get the quantity of the child whose partNumber is not
'PT13345'.

17

$..children[0].* Get all the children values of first children.

BM54888-1"

"PT13345"

1

$.attributes.* Get all the direct children of attributes node.

{"value":"Large","label":"Size"}

{"value":"Leave the package at the door.",

"label":"Special Instruction"}

$.attributes..* Get all the deep level children of attributes node.

{"value":"Large","label":"Size"}

{"value":"Leave the package at the door.",

"label":"Special Instruction"}

"Large"

"Size"

"Leave the package at the door."

"Special Instruction"

$..children[-1:].quantity Get the last child’s quantity.

17

$..children[*].quantity Get the quantities for all the children.

1

17

FUNCTIONS TO SUPPORT REMOTE APPROVALS

The following functions are available to support remote approvals. CPQ Cloud integration with Oracle

Process Cloud Service (PCS) leverages these functions. The functions are also useable outside of PCS.

 dict<anytype>

 bytearray

 getattachmentdata

 urlmultipartbypost

NOTE: Use the remote approval functions to retrieve the content of a file attachment as a byte array

data type and store the attachment details in a new data type called dict<anytype>.

 66

DICT<ANYTYPE>

dict<anytype>

Description This function supports the addition of multiple types of objects in a dictionary. The
dictionary get(), put(), and keys() functions also now support the addition or retrieval of
values or keys from a dict<anytype>.

Parameter <anytype> String <anytype> represents one or more combinations of the
following data types: string, integer, float, date, string[],
integer[], float[], date[], string[][], integer[][], float[][],
date[][], boolean, dict<string>, dict<anytype>,
dict(dict<anytype>), JSON, JSON array, or byte array.

Syntax dict(String <anytype>)

Sample Input

d1 = dict("anytype");

put(d1, "key1", "value1");

jObj = json("{\"K1\":\"V1\"}");

put(d1, "key2", jObj);

Sample Return A dictionary to contain key-value entries of various data types is created and two key-
value entries are inserted into the dictionary.

BYTEARRAY()

bytearray()

Description This function stores a collection of binary data such as the contents of a file. It encodes
the given string into a sequence of bytes using the specified character encoding. This
new type was added to support PCS integration and is used in the BML
getattachmentdata function to return the content of a file as a byte array.

Parameter content String The string to be encoded.

charSet String The character encoding. This can be any encoding supported
by Java SE Runtime Environment 6, such as ASCII, ISO-8859-1,
UTF-32BE, etc.

Optional, the default is UTF-8 if not provided.

Syntax ByteArray bytearray(String content [, String charset])

Sample Input

content Sample String

charset UTF-16

Sample Return bytearray [UTF-16]: Sample String

 67

GETATTACHMENTDATA()

getattachmentdata()

Description This function returns the file name (filename), file content (filecontent), and MIME type
(mimetype) of a given file attachment attribute in a dictionary of <anytype>. The file
content can be retrieved as a bytearray or as Base64 encoded string based on the input
parameters.

Parameter attachmentId String The ID of the attachment returned. This ID is returned
in the reference to the attachment attribute in BML.

asBytes Boolean If true, the returned datatype will be a bytearray; If
false, the returned datatype will be a Base64 encoded
String.

Optional, the default is false if not provided.

Syntax Dict<anytype> getattachmentdata(String attachmentId [,

Boolean asBytes]

Sample Input

attachmentID 12345678

asBytes false

Sample Return {

 mimetype=text/plain,

 filename=example.txt,

 filecontent=VGhpcyBpcyBhbiBleGFtcGxlLg==

}

 68

URLMULTIPARTBYPOST()

urlmultipartbypost()

Description This function supports remote approvals by sending multi-part messages with attachments.

Parameters url String The request url.

payload String The payload.

headers Dictionary The message headers.

Optional.

attachments Dictionary

Syntax Dictionary urlmultipartbypost(String url, String payload,

[Dictionary headers, [Dictionary attachments]])

Sample
Input

url requesturl

payload {"processDefId":"default~CPQApproval!1.0~QuoteApproval

Process","serviceName":"QuoteApprovalProcess.service",

"operation":"start","payload":"<quot: start

xmlns:quot='http://xmlns.oracle.com/bpmn/bpmnCloudProc

ess/CPQApprovalDemo/QuoteApprovalProcess'><requestor>S

uyog</requestor><quoteId123456</quoteId><quoteTotal>12

567</quoteTotal><discountPercentage>23</discountPercen

tage><requestorEmail>approve_pCSsubmit</requestorEmail

></quot:start>",

"action":"Submit"}

headers message header

attachments dictionary of multiple attachments

Sample
Return

On success, a Dictionary representation of the http response, such as “Status-Code”,
“Content-Type”, “Message-Body”, etc., is returned.

 69

GENERATE UNIQUE IDS FUNCTION

getuuid()

Description This function generates unique IDs for assets tracked in Subscription Ordering. Every
asset is tracked in Subscription Ordering using an asset key. When a unique ID is
generated, it becomes the asset key for an asset. The number of asset keys to generate
is dependent on the count parameter in the function.

Parameters count Integer The number of unique IDs to generate.

Syntax String[] getuuid(Integer count)

Sample Input count 2

Sample Return [6bafc278-25fd-495f-8360-67bcfb8776b0, 65abced9-5c47-47c6-

bf18-ab96fb73935f]

URL ACCESS FUNCTION

The urldata()function has been enhanced to support the http “DELETE” and “PUT” methods of RESTful

web services.

Examples:

Invoke RESTful service using http DELETE method:

headerDict = dict("string");

encodecredential = encodebase64("<username>:<password>");

authStr = "Basic " + encodecredential;

put(headerDict, "Authorization", authStr);

response =

urldata("http://<hostname>/rest/v1/commerceDocumentsTransaction_bmClone_2Quote

/{bsid}/lineItem/{id}", "DELETE", headerDict);

Invoke RESTful service using http PUT method:

headerDict = dict("string");

encodecredential = encodebase64("<username>:<password>");

authStr = "Basic " + encodecredential;

put(headerDict, "Authorization", authStr);

put(headerDict, "Content-Type", "application/json");

cancelBody = "{\"id\":\"cancel\"}";

response = urldata(“http://<hostname>/bpm/api/1.0/processes/101”, "PUT",

headerDict, cancelBody);

 70

SAME SERVER AUTHENTICATION

The urldata() and urldatabypost() functions have been enhanced to allow optional authorization when

invoking an internal RESTful web services call. If authorization credentials are not provided, the current

user’s login credentials are used.

Example:

Invoke RESTful service using urldatabypost():

url =

"http://<hostname>/rest/v1/commerceDocumentsTransaction_bmClone_2Quote/{id}

/actions/saveWithAdvancedValidation";

jsondesc = json();

jsonput(jsondesc, "quoteDescription", "new Quote");

payload = json();

jsonput(payload, "documents", jsondesc);

headerDict = dict("string");

//Authorization string is no longer required in the header

put(headerDict, "Content-Type", "application/json");

urldatabypost(url, jsontostr(payload), "" , headerDict, true);

USER SESSION FUNCTIONS

User session functions support setting, removing, and getting a key-value pair from the session cache in

BML to support Subscription Ordering. The values are available as long as the user session is active.

Values stored in the session cache are removed automatically when the user logs out, the session

expires, or the server is restarted.

The following are new user session functions:

 usersessionset():

 usersessionget():

 usersessionremove():

 71

USERSESSIONSET()

usersessionset()

Description This function sets a key-value pair to the user session. The set key-value pair is lost once
the session expires.

Parameter key String The key corresponding to the stored value.

value String or JSON The value to be stored. The value can be of type String or
Json.

Syntax usersessionset(String key, <ValueType> value)

Sample Input key sessionKey1

value value1

Sample Return A key-value pair is set in the user session.

USERSESSIONGET()

usersessionget()

Description This function retrieves a value for a given key from a user session. If the key is not
found, null is returned.

Parameter key String The key corresponding to the value to be retrieved.

valueType String or JSON The expected data type of the returned value.

Optional. The default value is String.

Syntax <ValueType> usersessionget(String key [, String valueType])

Sample Input

key sessionKey1

valueType String

Sample Return value1

 72

USERSESSIONREMOVE()

usersessionremove()

Description This function removes a key−value pair from the user session. The function returns true
if the key-value pair is successfully removed, and returns false if the key does not exist
in the user session.

Parameters Key String The key corresponding to the key-value pair to be removed.

Syntax Boolean usersessionremove(String key)

Sample Input sessionKey1

Sample Output true

GLOBAL DICTIONARY FUNCTIONS

Global dictionary functions support Subscription Ordering and are available for setting, getting, and

removing a key-value pair from the global dictionary in BML. Available across multiple sessions, the

values are removed periodically when they exceed the minimum time to live specified while setting the

value. There is no guarantee the global dictionary values are available after the minimum time to live.

The following are the new global dictionary functions:

 globaldictset():

 globaldictget():

 globaldictremove():

 73

GLOBALDICTSET()

globaldictset()

Description This function adds or updates the key-value pair in the global dictionary.

Parameters key String If key is null or empty, a unique key is generated and
added to the global dictionary. If the key provided is
not present in the global dictionary, a key-value pair is
added to the global dictionary.

 value String If a key is present, the value is updated for the
 corresponding key.

 minTimeToLive Integer The minimum time, in minutes, the key-value
 pair is guaranteed in the global dictionary. The value
should be greater than 0 and less than 525600 minutes
(365 days).

Optional. The default value is 1440 minutes.

Syntax String globaldictset(String key, String value [, Integer

minTimeToLive])

Sample Input key globalKey1

value value1

minTimeToLive

Sample Output globalKey1

 74

GLOBALDICTGET()

globaldictget()

Description This function returns a value stored in the global dictionary corresponding to the given
key. If the key is not found in the global dictionary, null is returned.

Parameters key String The key corresponding to the value to be
retrieved.

 updateTimeToLive Boolean If set to true, the minimum time to live is
recalculated from the retrieved time. If set to
false, there is no change to minimum time to live.

Optional. The default value is false.

Syntax String globaldictget(String key [, Boolean updateTimeToLive])

Sample Input key globalKey1

updateTimeToLive

Sample Output value1

GLOBALDICTREMOVE()

globaldictremove()

Description This function removes a given key-value pair from the global dictionary. The function
returns true if the key-value pair is successfully removed, and returns false if the key
does not exist in the global dictionary.

Parameters key String The key corresponding to the key-value pair to be removed.

Syntax Boolean globaldictremove(String key)

Sample Input globalKey1

Sample Output true

 75

THROW ERROR

throwerror()

Description This function stops the execution of a BML script and displays either a business logic error
or a system error to the end user. In the case of a system error, a generic error message
displays and the actual error message is logged to the error log file.

Note: Oracle does not recommend using this function in Configuration or Commerce rule
conditions. When the rules are triggered from quote transaction screens, the error does
not always display to the user.

Parameters errorMessage String The error to display to the end user.

isSystemError Boolean The flag to select an error type. If false, errorMessage is
displayed to the user. If true, a system error is thrown
and errorMessage is printed in the error log file.

Optional. The default value is false.

Syntax throwerror(String errorMessage [, Boolean isSystemError])

Sample
Input

Scenario 1 Input:

throwerror("This is a custom error!!");

Scenario 2 Input:

throwerror("This is a system error!!",true);

Sample
Output

Scenario 1 Output:

Message displayed to the user "This is a custom error!!"

Scenario 2 Output:

Message displayed to the user:
"An unknown error has occurred. Please contact system administrator."

The error log contains the following message:
"This is a system error!!"

 76

APPLY TEMPLATE

applytemplate()

Description This function applies a set of token key-value pairs to the template file using JSON data.
This function supports JSON data along with the already-existing dictionary payload.
If a value is present in both the dictionary payload and JSON data for the same key, the
JSON data takes precedence over the dictionary payload.

Parameters templateFileLocation String The location of the template file.

payload Dictionary The payload containing values for the defined
tokens in the template.

Optional. The default value is null.

defaultErrorMessage String The default error message to be displayed in
case any error is encountered.

Optional. The default value is null.

jsonIdentifier Json The JSON containing values for the defined
tokens in the template.

Optional. The default value is null.

Syntax String applytemplate(String templateFileLocation [, Dictionary

payload [, String defaultErrorMessage [, Json jsonIdentifier]]])

Sample Input Template file test.txt: 4

This is user defined variable VAR1, value = {{VAR1}}.
This is user defined variable VAR2, value = {{VAR2}}.
This is user defined variable VAR3, value = {{VAR3}}.

BML:

templateFileLocation = "$BASE_PATH$/ApplytemplateTest/test.txt";

payload = dict("string");

put(payload, "VAR1", "payloadVal1");

put(payload, "VAR2", "payloadVal2");

jsonObj = json("{\"VAR2\":\"jsonVal2\",\"VAR3\":\"jsonVal3\"}");

output = applytemplate(templateFileLocation, payload, "",

jsonObj);

Sample
Output

This is user defined variable VAR1, value = payloadVal1.

This is user defined variable VAR2, value = jsonVal2.

This is user defined variable VAR3, value = jsonVal3.

 77

BML PRINT LOG

Print the output of BML print statements to the log file for easier debugging of errors related to

functions referenced in Subscription Ordering scripts. An "Enable BML print logging" option was added

to the General Site Options area of the CPQ Cloud Administration Platform. Use this option to enable or

disable the logging of print statements in BML. By default, BML Print Logging is disabled.

When BML Print Logging is enabled and an error is encountered, an error message is logged in the error
logs. All of the print statements after the line throwing error are not logged into the error logs. This
behavior is used to debug scripts by providing multiple print statements and observing the print
statements that are not logged in the error logs. This points administrators to the location where the
error is thrown.

For Example: The figure below shows two print statements and a piece of code in-between, which is
used to throw an error. After executing the BML script, the error logs will contain “start” but not “end”.
As a result, the administrator can conclude that the error is thrown somewhere after “start” and before
“end”.

Figure 47: Sample BML Print Log

NOTE: Administrators should disable the “Enable BML print logging” option in production.

Oracle recommends that no sensitive content be printed to the logs. Oracle does not assume

responsibility for the data placed in the logs.

KEY RESOURCES

 For an overview of JSON data, refer to www.json.org.

 CPQ Cloud Online Help: Refer to the Using BML topics.

http://www.json.org/

 78

DOCUMENT DESIGNER ENHANCEMENTS

Document Designer is a drag and drop tool for creating and administering document templates. In CPQ

Cloud 2016 R1, Document Designer introduces the following new enhancements:

 Performance Enhancements

 Formatting and Style Enhancements

 Contract Negotiation Enhancements

PERFORMANCE ENHANCEMENTS

New performance enhancements reduce the amount of time taken to load or save template files. In

previous versions of CPQ Cloud, loading large templates took a long time and sometimes resulted in the

browser timing out. Document Designer templates now load faster, allowing administrators to access

and edit templates more quickly.

FORMATTING AND STYLE ENHANCEMENTS

The following formatting and style enhancements are available in CPQ Cloud 2016 R1:

 Continuous Sections

 Conditional Background Images

 Column Break Element

 Expand/Collapse All Buttons

 Header and Footer Margins

 Table Alignment

 79

CONTINUOUS SECTIONS

Use a Continuous Section to split a single Document Designer section into two or more continuous

sections without a page break between each section. A continuous section functions as a child of the

parent section and inherits the margins, page orientation, and background image of the parent section.

When dragged, a continuous section moves with its parent section. Parent and continuous sections are

identified by icons that display in the section’s header.

 Figure 48: Parent Section and Continuous Section

In CPQ Cloud 2016 R1, a Continuous Section property is available in the Section Properties panel. The

Section Properties panel is accessed by clicking a specific section of a Document Designer template.

Selecting the Continuous Section checkbox makes the selected section a child of the preceding section.

Figure 49: Continuous Section Check Box

 80

TIPS AND CONSIDERATIONS FOR CONTINUOUS SECTIONS

Consider the following tips when using the new Continuous Section feature:

 The Continuous checkbox is disabled for the section at the beginning of a layout and the
sections after the Header, Footer, and Table of Contents elements.

 Administrators can apply conditions and loops to both sections and continuous sections.
When the Apply to Continuous Sections checkbox is selected from the Loop dialog or the
Conditional dialog for the parent section, the loop or condition applies to all of the
continuous sections.

 Figure 50: Apply to Continuous Sections Check Box − Loops

 Page-related properties are disabled when working with continuous sections. Only non-
page-related properties are editable in continuous sections.

 When a section and a continuous section are both selected, the Section Properties panel
does not display any properties.

 Administrators cannot delete a section with continuous sections unless the Continuous
Section checkbox is unchecked for the sections.

 81

CONDITIONAL BACKGROUND IMAGES

CPQ Cloud 2016 R1 introduces two new enhancements related to background images: Background

images in .DOCX output files and conditional background images. In both cases, administrators can set

the background image or the conditional background image at either the document level (i.e.

throughout the document) or the section level (i.e. within a specific section of the document).

NOTE: Use the Document Properties panel to set a background image or a conditional background

image at the document level. Use the Section Properties panel to set a background image or a

conditional background image at the section level. The same Background Image fields and buttons are

available in both the Document Properties panel and the Section Properties panel.

Figure 51: Browse to Background Image for .DOCX Output File

Use the Browse File Manager window to select the image to display in the .DOCX output file.

Figure 52: Browse File Manager

Administrators can set a conditional background image at either the document or section level. When a

condition is set, administrators can place a background image on a template and show, hide, or change

an image based on the condition.

 82

Conditions are evaluated as either True or False. If true, the image in the Background Image field

displays. If False, administrators can specify another image in the Alternative Background Image field. If

no image is specified in the Alternate Background Image field, no background image displays. When no

condition is set, the image selected in the first field becomes the default background image.

If a section’s background image results in a blank URL displaying, the URL of the document’s background

image will display instead.

For example: Assume there is a background image (e.g. document.jpg) set at the document level and a

conditional background image set at the section level (e.g. section.jpg) in the same document. No image

is specified in the Alternate Background Image field. If the section’s condition is set to true, then

section.jpg is shown. If the section’s condition is false, then document.jpg is shown. If the Background

Image field is left blank but an alternate image is specified (e.g. alternate.jpg), the alternate image is

shown.

To specify a conditional background image:

1. Open the Document Properties panel to specify a condition at the document level.
-or-
Open the Section Properties panel to specify a condition at the section level.

2. Click the Condition button next to the Background Image field to open the Conditional dialog
and enter a condition.

3. Click OK.

Figure 53: Conditional Dialog

 83

COLUMN BREAK ELEMENT

The column break element is a new type of element introduced in CPQ Cloud 2016 R1. Drag and drop

one or more column break elements onto a section to start the content in the next column. In a section

with only a single column, the column break behaves like a page break. Column break elements only

display in Document Designer and are not visible to users in the output document.

The Column Break element is available in the Elements panel of Document Designer.

Figure 54: Column Break Element in Elements Panel

NOTE: A column break element can be placed in a section but not in a table cell, header, or footer.

 84

EXPAND ALL/COLLAPSE ALL BUTTONS

Use the Expand All and Collapse All buttons in the header of the Document Designer Editor to expand

or collapse all Document Designer layout objects (e.g. Section, Table of Contents, Header & Footer) in a

template.

Figure 55: Expand All & Collapse All Buttons

NOTE: Using the Expand All action for large templates with several sections may have an impact on

performance.

When expanding sections that contain more than approximately 500 components, the following

warning message displays, “The maximum number of supported elements was exceeded in some

sections, so not all elements are displayed. Please redistribute elements among continuous sections.

Then, save and reload the template.”

To avoid performance issues when working with continuous sections, consider the following tips:

 Split large sections into small continuous sections.

 Save the template frequently as a general best practice.

 Do not have several sections expanded at the same time.

 After saving a section and before working in a new section, refresh the page to clear the
browser’s cache.

 If parts of a document are static, consider creating separate files and embedding the files as
components.

 As a good practice, Oracle recommends not creating extremely large sections.

 85

HEADER AND FOOTER MARGINS

Separate header and footer margin fields are now available and can be applied to sub-sections

individually. The top and bottom margins of a section are applied after the Header and Footer margins

are applied.

To access the Margin fields, click on a header or footer to open the Properties panel for the header and

footer.

Figure 56: Header Margins

NOTE: When printing output files of type .DOCX or PDF and the left and right header and footer

margins are different from the left and right page margins, the section’s left and right margins are

applied instead of the header and footer margins and page margins.

TABLE ALIGNMENT

Change the alignment of a table by left−aligning, centering, or right−aligning the table based on the

width of the page. By default, tables are left−aligned. When multiple tables are selected, the selected

table alignment option applies to all of the tables. The new Table Alignment property is available in the

Elements panel under Table properties.

Figure 57: Table Alignment

 86

CONTRACT NEGOTIATION ENHANCEMENTS

The following CPQ Cloud 2016 R1 Document Designer enhancements support the Contract Negotiation

feature introduced in the 2016 R1 release. While designed to support Contract Negotiation, users can

include the following Document Designer enhancements on any Document Designer template when

Contract Negotiation is enabled on their CPQ site. For additional information, refer to the Contract

Negotiation section of this document.

 Track Changes: Allow users to leverage Microsoft Word’s track changes feature in .DOCX
output files. The Track Changes feature is enabled in .DOCX output files by selecting the
Track Changes checkbox in the Document Properties panel of Document Designer.

 Figure 58: Track Changes Check Box

 eSignature Vendor: Integrate with DocuSign and place an eSignature tag attribute within a
text or heading element in a section, table, header, or footer of a Document Designer
template.

 87

NOTE: For additional information about the Contract Negotiation feature available in CPQ Cloud

2016 R1, refer to the Contract Negotiation section of this document.

STEPS TO ENABLE

The CPQ Cloud 2016 R1 Document Designer enhancements are automatically available on CPQ Cloud

2016 R1 sites.

KNOWN ISSUES

Consider the following known issues when working with Document Designer:

 When a large number of elements (e.g. text elements, images, table cells) are included in a
section, issues with search results may occur. As a best practice, keep the number of
elements within individual sections to 300 or less.

 When the maximum number of supported elements is exceeded in a section, a warning
message displays and only a partial list of elements is available in the Editor. If the Copy
button is clicked, only the elements displayed in the Editor are copied. When the copied
section is then pasted into the document, the previously mentioned warning message
displays.

 When an attribute is added to a text element and the attribute is then deleted from the
Process Definition area of CPQ Cloud (Admin > Commerce and Documents > Process
Definition), an error message does not initially display on the text element. When the
document is re-opened, the error message will then display on the text element.

 When a Commerce attribute is deleted while a Document Designer template is open, a
validation error does not display and changes made to the template are still saved. If the
template is re-loaded, the validation error then displays.

KEY RESOURCES

CPQ Cloud Online Help: Refer to the Document Designer topics.

 88

LONG RUNNING THREAD DIAGNOSTICS

Long running thread diagnostics provide administrators with more tools to isolate and resolve

performance issues. Prior to this enhancement, administrators had to shut down and restart an entire

site to terminate long running actions. Diagnostics for long running requests that exceed a customizable

time threshold are now provided for all Commerce and Configuration actions. There are three Timeout

action settings: Kill and Log, Log Only, and No Action.

TIMEOUT ACTION SETTINGS

The following table summarizes actions performed for each of the Timeout Action settings.

Timeout Action Kill Action
Request

Error Message
Displayed

Event Sent to
Slow Thread Log

Event Sent to
Performance Log

Kill and Log

Log Only

No Action

For example, when an action exceeds the Time Threshold and the Timeout Action is Kill and Log, the

system will perform the following actions:

 Send a Kill Action request

 Record the event in the Slow Thread Log

 Record the event in the Performance Log

 Display an error message on the page where the action was initiated

Figure 59: Long Running Thread Diagnostics Error Message

NOTE: When the system sends a Kill Request, the terminating action waits for an interruptible point in

the long running action.

VIEW LOGS

The system records events in the Performance Log and the Slow Thread Log to aid administrators in

troubleshooting. Event logging occurs when actions exceed the Timeout Threshold and the Timeout

Action is set to Kill and Log or Log Only.

PERFORMANCE LOGS

 89

The Performance Log provides an overall snapshot of system performance. Administrators can access

Performance Logs from the Admin Home page in the Developer Tools section.

Figure 60: Performance Logs

 90

SLOW THREAD LOG

The Slow Thread Log file provides detailed information regarding errors. To view the Slow Thread Log:

1. Click Admin to go to the Admin Home page.

2. Click Error Logs in the Developer Tools section.

3. Click slow_thread_executions.log.

Figure 61: Slow Thread Log

 91

TIMEOUT ACTION SETTINGS

The settings for long running thread diagnostics are available from the Commerce Settings and

Configuration Settings pages. The long running thread diagnostics setup on these pages controls all

actions for their respective areas. The default Timeout Action setting is Log Only, and the Timeout

Threshold is set to 2 minutes.

COMMERCE TIMEOUT ACTION SETTINGS

Administrators can set Timeout Actions and Thresholds for all Commerce actions from the

Commerce Options page.

Figure 62: Commerce Timeout Action

In addition, administrators can set Timeout Thresholds on individual Commerce actions. The specific

Commerce action Timeout Threshold setting takes precedence over the general Commerce setting. This

allows the administrator to isolate performance issues on a single Commerce action.

Figure 63: Individual Commerce Action Timeout

 92

CONFIGURATION TIMEOUT ACTION SETTING

Administrators can set Timeout Actions and Thresholds for all Configuration actions from the

Configuration Options page.

Figure 64: Configuration Timeout Action

STEPS TO ENABLE

Long Running Thread Diagnostics are automatically available on all 2016 R1 sites.

KEY RESOURCES

CPQ Cloud Online Help: Refer to the Configuration Settings, Commerce Process Settings, and Long

Running Thread Diagnostics topics.

 93

INTEGRATION

CPQ Cloud administrators can leverage the power of CPQ Cloud by integrating with other software

applications. CPQ Cloud administrators can use these point-to-point integration solutions as defined

out-of-the-box or enhance the provided integration patterns to meet their distinct information

technology landscapes and requirements.

New integration features available in CPQ Cloud 2016 R1 include:

 Salesforce1 Integration

 CPQ Cloud − eBusiness Suite (EBS) BOM Reference Integration

 Process Cloud Service (PCS) Integration

 Rest APIs

 Platform as a Service (PaaS) Integration Sample Applications

SALESFORCE1 INTEGRATION

The Salesforce1 mobile offering from Salesforce was delivered with new mobile standards that are

supported by CPQ Cloud 2016 R1. Using the Salesforce Commerce Integration Managed Package,

administrators can integrate the CPQ Cloud mobile UI with the Salesforce1 mobile UI. This integration

supports all of the existing capabilities of the desktop integration between CPQ Cloud and Salesforce on

a mobile device. The Salesforce1 integration is packaged in the Salesforce Reference Application, which

includes updated cascading style sheets (CSS) to make the CPQ mobile experience look more like

Salesforce1.

NOTE: The Salesforce1 integration does not affect the CPQ Cloud-Salesforce desktop integration.

The Salesforce Commerce Integration Managed Package supports both the mobile integration and the

desktop integration.

STEPS TO ENABLE

The Salesforce Commerce Integration Managed Package is installed in Salesforce to integrate with CPQ

Cloud. Version 7.0 of the Salesforce Commerce Integration Managed Package supports Salesforce1.

For instructions on how to integrate the CPQ Cloud mobile UI with the Salesforce1 mobile UI, refer to

version 7.0 of the Oracle CPQ Cloud − Salesforce Commerce Integration Managed Package

Implementation Guide.

 94

TIPS AND CONSIDERATIONS

Consider the following tips when using the Salesforce1 integration:

 When using Salesforce1 to generate a quote, iPad users are able to print the quote, opening
a PDF or Word file within Oracle CPQ Cloud on the Salesforce1 app. However, the same does
not work on Android devices due to a Salesforce1 platform limitation. When the Print option
is selected from a quote on an Android device in Salesforce1, the system attempts to
download the file and open it in a browser. Since the browser is a separate app, the
Salesforce1 authentication will not work, and thus the document cannot be viewed.
Customers may work around this issue by sending the document via an email action for
users on Android devices.

 When the New button is clicked from the Salesforce1 mobile application to create a new
quote and the Cancel button is then clicked to cancel the quote, the Salesforce1 Home page
or a blank page sometimes displays instead of the Oracle Quotes and Orders page.

 When using the Salesforce1 application on an Android device, a blank page displays upon
navigating to a CPQ Cloud quote. As a workaround for this Salesforce1 issue, complete the
following steps upon initial installation of Salesforce1

o Navigate to Settings > Applications > Application Manager > SF1 App.
o Click Manage Storage.
o Click “Yes” to log out current users.

Upon logging back in, the issue is resolved and users can successfully navigate to a CPQ Cloud quote
from an android device.

NOTE: Refer to Oracle - CPQ Cloud Salesforce Commerce Integration Managed Package version 7.0

Implementation Guide for Supported Devices, Operating Systems, and Browsers.

KEY RESOURCES

 Salesforce Reference Application: The Salesforce Reference Application applies to both
Salesforce and Salesforce1.

 Salesforce1: Upgrade to Salesforce1 to use Salesforce on a mobile device.

 Salesforce Commerce Integration Managed Package version 7.0: Install version 7.0 of the
Salesforce Commerce Integration Managed Package to integrate the CPQ Cloud mobile UI
with the Salesforce1 mobile UI.

 Oracle - CPQ Cloud Salesforce Commerce Integration Managed Package version 7.0
Implementation Guide: Refer to the implementation guide for additional implementation
guidance.

 95

CPQ CLOUD − EBUSINESS SUITE (EBS) BOM REFERENCE INTEGRATION

The Oracle eBusiness Suite (EBS) integration introduced in CPQ Cloud 2015 R1 enabled direct integration

to EBS Customer, EBS Order Management, EBS Inventory On Hand Balance, and EBS Material

Reservation for common CPQ Cloud interactions. In 2016 R1, CPQ Cloud extends the EBS integration

with support of multi-level Bills of Material (BOMs). CPQ Cloud integrations with EBS Customer and EBS

Order Management are required to implement an EBS BOM Reference Integration.

STEPS TO ENABLE

CPQ Cloud

 Implement a CPQ Cloud - EBS Reference integration on any 2016 R1 or later CPQ Cloud site
with the base Reference Application deployed and the BOM Mapping rules implemented.
Refer to the BOM Mapping section for more detailed information.

 Migration Packages will be released for the EBS integrations so that administrators can
download the components needed for integration directly to CPQ Cloud.

E-Business Suite

Individual EBS applications must use EBS Release 12 or later to integrate with CPQ Cloud. Additionally,

EBS SOAP web services must be running to enable integration. Enabling these web services requires an

Internet Service Gateway (ISG) to be running on the EBS environment. See the CPQ Cloud-EBS

Integration Implementation Guide (see the Key Resources section) for a complete list of necessary EBS

web services.

 96

TIPS AND CONSIDERATIONS

Consider the following tip when using the CPQ Cloud - EBS BOM integration:

Existing CPQ Cloud customers who do not have the base Reference Application deployed can still

integrate CPQ Cloud with EBS, but will require additional implementation setup to apply the

integration components to their sites. Contact your Customer Success Manager for more

information.

KEY RESOURCES

My Oracle Support contains the following documents to assist with CPQ Cloud-EBS integration

implementation:

 CPQ Cloud & E-Business Suite Integration Implementation Overview

 CPQ-EBS Integration Implementation Guide

 BOM Mapping Implementation Guide

https://support.oracle.com/epmos/faces/DocumentDisplay?_afrLoop=489213601970654&id=1991064.1&_afrWindowMode=0&_adf.ctrl-state=16e26aoy9_529

 97

PROCESS CLOUD SERVICE (PCS) INTEGRATION

CPQ Cloud provides native workflow management features for Administrators to define complex

approval flows. However, customers may want to use remote approval systems to consolidate all of

their approvals in a single workflow engine such as Oracle Process Cloud Service (PCS), or Salesforce

Approval Processes. These remote applications provide a common configuration and common attributes

to manage approvals for an entire suite of applications, eliminating migration of approval data from one

system into another. When a customer chooses remote approvals, approval requests are sent to

external approval systems for processing. After approval completion, the associated approve/reject

action is performed on the remote approval system. The remote approval system calls the appropriate

approve/reject CPQ REST Endpoint to update the CPQ quote history and status.

Before you can leverage the pre-built PCS flows, you must establish a connection between PCS and CPQ

Cloud. For information on how to set up these connections, refer to the CPQ Cloud – PCS Integration

Implementation Guide.

The Remote Approval system processes Approvals when:

 The Oracle Process Cloud Service or other approvals service is set up.

 The remote approval sequence is enabled.

 Remote approval process functions are defined.

 A user submits a Quote for approval.

 98

APPROVALS OVERVIEW

The following tables summarize the differences in approval flow actions and resulting behavior when
using native CPQ Approval Flows versus Remote Approval Flows.

CPQ APPROVAL FLOW SUMMARY

CPQ Approval Flow

Submit The Request Action is called internally. The reason graph is evaluated and the reasons are

presented to the submitter.

 The submitter can pass on any comments to the approvers.

Approval Approvers are notified that their approval is required. They provide their approval or

rejection. The number of approvers depends on the defined reason graph.

Final
Approval

 If the quote is approved, after the last approver has approved, the submit action is fired

internally to transition the quote to the approved stage.

 If the quote is rejected, the approval status is changed to rejected, and the quote

transitions back to the saved status.

Revise Resets the entire process.

REMOTE APPROVAL FLOW SUMMARY

Remote Approval Flow

Submit The Request Action is called internally.

 BML is executed to communicate with the remote approval system, the response is

parsed, and the Remote Process ID is stored as an attribute.

Approval Once the approval process has been completed, the Remote Approval System makes a

REST call to the corresponding CPQ approve or reject action.

Final
Approval

 BML is executed from the approve or reject action to poll the remote approval system for

the approval history data. This data is inserted into the CPQ approval history and the

process is completed.

Revise BML is executed to communicate with the remote approval system to cancel/abort the

process and Remote Process ID is reset.

 Resets the entire process.

 99

APPROVAL SEQUENCE SELECTION

The Approval Sequence selection has been added to the Admin Action page for submit actions.

Administrators select Use Remote to enable the remote approval sequence.

Figure 65: Enable Remote Approval Sequence

NOTE: If a user disables the remote approval sequence - by selecting Use Approvals - any Integration

Processes tied to the remote approvals will no longer execute; these processes are effectively disabled

as well.

REMOTE APPROVAL PROCESS FUNCTIONS

If a remote approval is enabled, a Remote Call Processing - Define Function button appears to define

the calls to be made to the Remote approvals site. The administrator must then set up BML functions for

remote request approval, approve, and reject. Set up is not required for revise, which uses the same

process flow as CPQ revise.

 Request Approval - The administrator writes BML to send a call to the Remote Approval
System to initiate the approvals process, parse the response, and return the Process ID.
Created functions will execute at run time. Failure to create a function will throw an error at
runtime.

 Approve/ Reject - The administrator writes BML to send a call to the Remote Approval
System to pull the approval history data and return it in a tilde-separated string. Failure to
create a function will complete the approval process without updating the approval history.

 100

NOTE: Refer to the CPQ Cloud - PCS Implementation Guide for Best Practices and instructions on

building BML functions. The guide is available on My Oracle Support.

Figure 66: Remote Call Processing - Define Function

STEPS TO ENABLE

Refer to the CPQ Cloud - PCS Implementation Guide for detailed implementation instructions.

TIPS AND CONSIDERATIONS

You must use Oracle CPQ Cloud 2016 R1 or later to integrate with PCS.

NOTE: When using remote approval functionality, do not use REST/SOAP web services to initiate

approvals. The remote approval sequence does not support initiating approvals with REST/SOAP web

services. The only web service supported, to notify CPQ Cloud of the approval status, is on the REST

objects for approve and reject sub action REST Endpoints.

KEY RESOURCES

CPQ Cloud – PCS Integration Implementation Guide: Provides an overview of remote approvals and

instructions on how to implement the CPQ Cloud − PCS integration.

https://support.oracle.com/epmos/faces/DocumentDisplay?id=1674718.1
https://support.oracle.com/epmos/faces/DocumentDisplay?id=1674718.1

 101

REST APIS

In 2016 R1, CPQ continues our effort to expose objects through REST APIs and RESTful standards to

empower customers to powerfully extend the capabilities of their CPQ Cloud implementations. These

services use HTTP standards to promote simpler API calls and robust integrations. New APIs, available in

CPQ Cloud 2016 R1, provide functionality for Contract Negotiations and Subscription Ordering.

Contract Negotiation REST APIs

 DOCX Compare - Compares two Contract DOCX documents and returns a list of differences.

 DOCX Merge - Merges approved changes into a Contract DOCX.

 Subscription Ordering REST APIs

 CRUD Services for Assets consists of actions for asset maintenance.

 Synchronize Custom Operation synchronizes the payload edit with the hierarchy contents.

 Export Custom Operations consists of actions to export and retrieve asset objects.

 Import Custom Operations consists of actions to upload CSV files and import the data into asset
object files.

Enhancements to Query Parameters - includes additions to the expand parameter and $like operator

support for the q parameter.

 102

INTERFACE CATALOG

Documentation on all CPQ Cloud SOAP and REST services can be obtained by accessing the

Interface Catalogs page from Admin > Integration Platform > Interface Catalogs.

Figure 67: Interface Catalogs Page

REST API Endpoint

The endpoint for each REST API appends onto http://{siteurl}, where {siteurl} is the base
URL of the CPQ Cloud site.

 103

REST APIS FOR CONTRACT NEGOTIATIONS

This section describes DOCX Compare and DOCX Merge REST APIs.

DOCX COMPARE REST API

DOCX Compare

Description This operation compares two Contract DOCX documents created by Document
Designer and returns a list of modified clauses.

URI Endpoint /rest/v2/docxCompare

Parameters processVarname Variable Name of Commerce Process

transactionId ID of Transaction

oldDocAttachId ID of File Attachment for Old Document

newDocAttachId ID of File Attachment for New Document

HTTP Method POST

Response

Diffs

(Array of
JSON objects)

clauseId ID of changed clause

type Enum value of change type, eg: “MODIFIED”

clause label Label of changed clause

parentlabel Label of parent clause

reviewed Changes have been approved in Word

action English label of ‘type’, eg: “Updated”

Sample Response {

 "diffs": [

 {

 "clauseId": "123456",

 "type": "MODIFIED",

 "clauselabel": "Clause A Name",

 "parentlabel": "Parent Clause Name",

 "reviewed": "Y",

 "action": "Updated"

 },

 {

 "clauseId": "123789",

 "type": "MODIFIED",

 "clauselabel": "Clause B Name",

 "parentlabel": "Parent Clause Name",

 "reviewed": "Y",

 "action": "Updated"

 }

]

}

 104

DOCX MERGE REST API

DOCX Merge

Description This operation merges changes into a Contract DOCX document using a list of
approved changes and another Contract document as a source. It returns the
updated document as a base64 string.

URI Endpoint /rest/v2/docxMerge

Parameters processVarname Variable Name of Commerce Process

transactionId ID of Transaction

sourceFileAttachId ID of File Attachment for Source Document

targetFileAttachId ID of File Attachment for Merge Target Document

approvedChanges Array of changes to be applied

HTTP Method POST

Response errors Array of error messages

base64Doc String base64 document

REST APIS FOR SUBSCRIPTION ORDERING

CPQ Cloud exposes asset data through REST APIs. Asset REST APIs support create, read, update, and

delete (CRUD) operations. They also provide synchronize, import, and export operations.

 CRUD Operations: Get Asset List (GET) | Get Asset (GET) | Create Asset (POST) |
Update Asset (POST) | Delete Asset (DELETE)

 Synchronize Custom Operation

 Custom Export Operations export and retrieve an asset object.
Export Action | Get Exported File

 Custom Import Operations upload CSV files and import the data into asset object files.
Upload File | Import Action | Get Import Log File

 105

GET ASSET LIST REST API

Get Asset List (GET)

Description This operation returns all the assets data.

URI Endpoint /rest/v2/assets

Parameters

None

Query specifications that follow CPQ Cloud query and pagination parameters
syntax, and query specifications that follow a subset of MongoDB syntax can
organize or narrow return data.
For more information, see the Query Specification Syntax article in CPQ
Cloud Online Help.

HTTP Method GET

Success Response JSON data of all assets

Sample Payload Request None (nothing should be in the request payload)

Notes Returns all attributes from the asset object in JSON format.

 Returns Currency and Foreign Key (FK) attributes as complex attributes.

Refer to the Create Asset REST API for a sample complex attribute.

GET ASSET REST API

Get Asset (GET)

Description This returns asset data for a specific asset.

URI Endpoint /rest/v2/assets/{id}

Parameters

{id} The unique ID of the Asset

Query specifications that follow CPQ Cloud query and pagination parameters
syntax, and query specifications that follow a subset of MongoDB syntax can
organize or narrow return data.
For more information, see the Query Specification Syntax article in CPQ
Cloud Online Help.

HTTP Method GET

Success Response JSON data of the asset

Sample Payload Request None

Notes Returns all attributes from the asset object in JSON format.

 Returns Currency and Foreign Key (FK) attributes as complex attributes.

Refer to the Create Asset REST API for a sample complex attribute.

 106

CREATE ASSET REST API

Create Asset (POST)

Description This operation creates a new asset.

URI Endpoint /rest/v2/assets

Parameters None

HTTP Method POST

Success Response JSON data for the new asset is created.

Sample Payload
Request

{

 "partNumber": "part1",

 "quantity": "1.0",

 "displayKey": "display-100-2-1234",

 "customer": "SpecialAccount100",

 "assetKey": "abo_ae100",

 "discountPercent": "5.0",

 "discountAmount": {

 "currency": "USD",

 "value": 15.0

 },

 "currency": {

 "currencyCode": "USD"

 },

"fixedRecurringAmount": {

 "currency": "USD",

 "value": 50.00

 },

 "oneTimeNetAmount": {

 "currency": "USD",

 "value": 300.00

 }

}

Notes Currency is a Foreign Key (FK) attribute. Complex is the expected input type.

 Example complex type value for Currency attributes:

discountAmount,fixedRecurringAmount,oneTimeNetAmount

 107

UPDATE ASSET REST API

 Update Asset (POST)

Description This operation updates an existing asset.

URI Endpoint /rest/v2/assets/{id}

Parameters {id} The unique ID of the Asset to update

HTTP Method POST

Success Response Creation of the JSON data for the updated asset.

Sample Payload Request {

 "partNumber": "part1",

 "quantity": "1.0",

 "displayKey": "display-100-2-1234",

 "customer": "SpecialAccount100",

 "assetKey": "abo_ae100",

 "discountPercent": "5.0",

 "discountAmount": {

 "currency": "USD",

 "value": 15.0

 },

 "currency": {

 "currencyCode": "USD"

 },

"fixedRecurringAmount": {

 "currency": "USD",

 "value": 50.00

 },

 "oneTimeNetAmount": {

 "currency": "USD",

 "value": 300.00

 }

}

DELETE ASSET REST API

Delete Asset (DELETE)

Description This operation deletes an existing asset

URI Endpoint /rest/v2/assets/{id}

Parameters {id} The unique ID of the Asset to delete

HTTP Method DELETE

Success Response HTTP 200 OK

 108

SYNCHRONIZE REST API

Synchronize Custom Operation

Description This operation invokes a Synchronize action using the payload to edit the
hierarchy contents.

URI Endpoint /rest/v2/assets/actions/synchronize

Input
Payload Parameters

Documents

 Type: JSON

 Holds a row or collection. Each row can include an optional

“_sync_action” operation parameter.

_client_driven_action

 Type: Boolean

 Enables apply changes instead of replacing the target asset object.

Currently this parameter must be set to ‘true’.

Output
Payload Parameter

Documents

 Type: JSON

 Holds a row or collection. Each row can include an optional

“_sync_status” operation parameter.

HTTP Method POST

Success Response The JSON data for the asset object that was updated

Sample Request Payload Synchronize Request Payload Sample

Sample Response Payload Synchronize Response Payload Sample

Notes When updating a collection, utilize the user key to refer to the target

asset row.

 The _sync_action parameter supports add, modify, and delete values.

 The _sync_status parameter values include created and updated.

 The_proxy_id parameter, added to each row in the input payload,

enables parameter cross references. The value for each row must be

unique.

 The response payload does not include deleted objects assets.

 109

SAMPLE SYNCHRONIZE REQUEST PAYLOAD

{

 "_client_driven_action": true,

 "documents": {

 "items": [

 {

 "assetKey": "root_L1",

 "partNumber": "part1_update",

 "_proxy_id": "11",

 "_sync_action": "update",

 "childAssets": {

 "items": [

 {

 "assetKey": "child_L2",

 "partNumber": "part2_update",

 "_proxy_id": "1",

 "_sync_action": "update",

 "childAssets": {

 "items": [

 {

 "assetKey": "child_child_L3_1",

 "partNumber": "part3_update",

 "_proxy_id": "2",

 "_sync_action": "update"

 },

 {

 "assetKey": "child_child_L3_2",

 "_proxy_id": "3",

 "_sync_action": "delete"

 },

 {

 "assetKey": "child_child_L3_3",

 "partNumber": "part5",

 "customer": "SpecialAccount100",

 "displayKey": "display-100-2-1234",

 "_proxy_id": "4",

 "_sync_action": "create"

 }

]

 }

 }

]

 }

 }

]

 }

}

 110

SAMPLE SYNCHRONIZE RESPONSE PAYLOAD

{

 "_client_driven_action": true,

 "documents": {

 "items": [

 {

 "assetKey": "root_L1",

 "partNumber": "part1_update",

 "_proxy_id": "11",

 "_sync_action": "update",

 "childAssets": {

 "items": [

 {

 "assetKey": "child_L2",

 "partNumber": "part2_update",

 "_proxy_id": "1",

 "_sync_action": "update",

 "childAssets": {

 "items": [

 {

 "assetKey": "child_child_L3_1",

 "partNumber": "part3_update",

 "_proxy_id": "2",

 "_sync_action": "update"

 },

 {

 "assetKey": "child_child_L3_2",

 "_proxy_id": "3",

 "_sync_action": "delete"

 },

 {

 "assetKey": "child_child_L3_3",

 "partNumber": "part5",

 "customer": "SpecialAccount100",

 "displayKey": "display-100-2-1234",

 "_proxy_id": "4",

 "_sync_action": "create"

 }

]

 }

 }

]

 }

 }

]

 }

}

 111

CUSTOM EXPORT OPERATIONS

The following actions provide the capability to export an asset collection or single instance to a CSV file and

retrieve the results.

 Export Action exports an asset collection or single instance to a CSV file.

 Get Exported File retrieves the CSV file downloaded on the browser.

EXPORT ACTION REST API

Export Action

Description This operation invokes an Export action to export an asset collection or
single instance to a CSV file. It exports the object attributes as column
headers and the key attributes with the dotted notation.

URI Endpoint /rest/v2/assets/actions/export

Input Payload Parameter Criteria

Type: JSON

Requirements for the asset collection or single instance row export.

Output Payload Parameter exportedFileName

Type: JSON

This parameter contains the absolute path to the JSON control file used in
the consecutive call to retrieve the CSV file.

HTTP Method POST

Success Response The JSON data of the absolute path of the control file.

Sample
URI Endpoints

/rest/v2/assets/actions/export

/rest/v2/assets/{$asset_id}/actions/export

Sample
Request Payload

{

"criteria":{

 "fields":["assetKey","displayKey"],

 "orderby":["assetKey:desc"],

 "q":"{assetKey:{$eq: 'asdfgh'}}"

 }

}

Sample Response Payload JSON data of the asset object.

 112

Export Action

Notes Use the user key of the instance when exporting a single asset instance.

 This API only supports CSV format.

 Exports use dot notation for Foreign Key (FK) attributes.

For example, an asset object has an FK attribute called

‘rootAsset’. When querying data from this asset, the REST service

returns a JSON object for the ‘rootAsset’ attribute. The JSON object

contains the id and ‘assetKey’ of the ‘rootAsset’ object. The export

operation exports these attributes as ‘rootAsset.id,rootAsset.assetKey’.

 Exports also use dot notation for Currency attributes. For example, an

asset object has a Currency attribute called ‘discountAmount’. When

querying data from this asset, the Rest service returns a JSON object

for the ‘discountAmount’ attribute. The JSON object contains the value

and Currency of the ‘discountAmount’ attribute. The export operation

exports these attributes

as ‘discountAmount.value,discountAmount.currency’.

 Exports also use dot notation for LOVs.

GET EXPORTED FILE REST API

Get Exported File

Description This operation invokes a GET call to retrieve the CSV file downloaded on
the browser.

URI Endpoint /rest/v2/files/fileName

Parameter fileName

This parameter contains the control file name from the export call
response.

HTTP Method GET

Success Response The CSV file with the data.

Sample URI Endpoint /rest/v2/files/assets_1464387178004

Sample Request Payload None

Sample Response Payload Refer to the exported Asset CSV data file.

Notes These calls perform user access validation, so the same user must perform
the export and get file calls.

 113

CUSTOM IMPORT OPERATIONS

 Upload File Operation uploads a CSV file and returns a control file used for import.

 Import Action imports the uploaded CSV file to modify data for a particular resource.
It supports add, modify, and delete operations.

 Get Import Log File retrieves the import log file.

UPLOAD FILE OPERATION REST API

Upload File Operation

Description This operation invokes a POST call to upload a file from the user’s file
system. It returns a control file used for the import action.

URI Endpoint /rest/v2/files

File Parameters

attachment The CSV file

Header content-disposition

Media-type application-JSON/octet-stream

HTTP Method(s) POST

Success Response The response provides the absolute path to the control file, which contains
user Information and the absolute path to the CSV to be imported.

Sample URI Endpoint /rest/v2/files/

Sample Request Payload CSV file

Sample Response Payload /rest/v2/files/upload_1465847155416

Notes The import CSV file should contain a column called ‘_sync_action’ to

specify actions to perform. If the CSV file does not contain this column,

the default upsert action is used.

 Use dot notation to represent Foreign Key (FK) attributes.

For example, an asset object has an FK attribute called ‘rootAsset’. The

import operation should import these attributes

as ‘rootAsset.id,rootAsset.assetKey’.

 Use dot notation to represent Currency attributes. For example, an asset

has a Currency attribute called ‘discountAmount’.

The import operation needs to import these attributes

as ‘discountAmount.value,discountAmount.currency’.

 Use dot notation to represent LOVs.

http://ootasset.id/

 114

IMPORT ACTION REST API

Import Action

Description This operation invokes an Import action to process the uploaded CSV to
import data into a specified. It supports create, update, and delete
operations.

URI Endpoint /rest/v2/assets/actions/import

Input Payload Parameter fileName

File name extracted from the response rest link in the previous call.

Output Payload Parameter importLogFileName

This parameter contains the absolute path to the control file, which
contains user Information and the absolute path to the log file.

HTTP Method POST

Success Response The absolute path to the control file, which contains user Information
and the absolute path to the log file.

Sample URI Endpoint /rest/v2/assets/actions/import

Sample Request Payload { "fileName":"upload_1465847155416" }

Sample Response Payload {

 "importLogFileName": "https://cpq-

072.us.oracle.com

/rest/v2/files/assets_output_1465848183346"

}

 115

GET IMPORT LOG FILE REST API

Get Import Log File

Description Invokes a GET call to retrieve the actual import log file.

URI Endpoint /rest/v2/files/fileName

Parameter fileName The name of the import log file from the import call
response

HTTP Method GET

Success Response The CSV file with the object data as the status (CSV column) of the import
for each row and if the import failed for the row the error message (CSV
column).

Sample URI Endpoint /rest/v2/files/assets_output_1465848183346

Sample Request Payload None

Sample Response Payload CSV file

Notes User access is validated, so both the import and get log file calls should be
performed by the same user.

ENHANCEMENTS TO QUERY PARAMETERS

The following query enhancements are available with CPQ 2016 R1.

 Expand Query Parameter

 $like Operator Support for the q Parameter

 116

EXPAND QUERY PARAMETER

Existing functionality allows expanding the root, which expands the first level children for the root.
Additions in this release provide the following enhancements:

 Expand on any level. Child object references use dot notation.

 Recursive expand on linked objects with the syntax *.all.

 Activate selective fields during expand and recursive expand.

Query Parameters URL Format

{resourceURI}?{param}={paramSpec}&{param}={paramSpec}&{param}={paramSpec}

Expand Query Parameter Examples

Expand Query Parameter Description / Example

all This parameter expands an asset object and its children.

/rest/v2/dynamicResource/assets?expand=all

childAssests.all This parameter expands a child asset object and its children.

/rest/v2/dynamicResource/assets?expand=childAssests.all

childAssets.

wrongname.all
This parameter expands a non-existing object.

Child wrongname at path childAssets.wrongname does not exist or is not
accessible in childAssets object for current use.

/rest/v2/dynamic/assets?expand=

childAssets.wrongname.all

childAssets*.all This parameter recursively expands an asset object and all children assets.

/rest/v2/dynamicResource/assets?expand=childAssets*.all

childAssets*.all&

fields=childAssets

.partNumber

This parameter recursively expands and activates specified fields. It will only
activate and retrieve fields specified in the query.

/rest/v2/dynamicResource/assets?expand=

childAssets*.all&fields=childAssets.partNumber

 117

$LIKE OPERATOR SUPPORT FOR Q PARAMETER

This addition provides sequel style "LIKE" operations via the $regex operator, because this functionality
is not supported by the MONGO standard. To ease usage, it also provides an extension “$like” operator,
which translates to the SQL LIKE operator more intuitively. Both cases support a Case Insensitive search
option.

$like Operator Examples:

Description $like Operator Example $regex Operator Example

FieldN contains "myValue" ?q={"FieldN":

{$like:"%myValue%"}}

?q={"FieldN":

{$regex:"myValue"}}

FieldN starts with "myValue" ?q={"FieldN":

{$like:"myvalue%"}}

?q={"FieldN":

{$regex:"^myvalue"}}

FieldN ends with "myValue" ?q={"FieldN":

{$like:"%myvalue"}}

?q={"FieldN":

{$regex:"myvalue$"}}

FieldN matches "myValue" ?q={"FieldN":

{$like:"myvalue"}}

?q={"FieldN":

{$regex:"^myvalue$"}}

FieldN matches "myValue"

Case Insensitive

?q={"FieldN":{$like:

"myvalue",$options:"I"}}

?q={"FieldN":

{$regex:"/^myvalue$/i"}}

STEPS TO ENABLE

Query Parameter Enhancements, Contract Negotiation REST APIs, and Subscription Ordering REST APIs

are automatically available on CPQ Cloud 2016 R1 sites.

TIPS AND CONSIDERATIONS

Consider the following tips when using the new REST APIs available in CPQ Cloud 2016 R1:

 REST APIs will not invoke Process actions.

KEY RESOURCES

 CPQ Cloud Online Help: Refer to the REST API topics.

 MongoDB Query Documents

http://docs.mongodb.org/manual/tutorial/query-documents/

 118

PLATFORM AS A SERVICE (PAAS) INTEGRATION SAMPLE APPLICATIONS

Platform as a Service (PaaS), specifically PaaS-Software as a Service (SaaS) Extension allows customers to

deploy their in-house web services and applications in a managed hosting environment to integrate with

and extend the features offered by SaaS Solutions, such as CPQ Cloud. Sample applications delivered by

CPQ Cloud exhibit design patterns that can solve some common use cases for integration between CPQ

Cloud and PaaS-SaaS Extensions. The following sections provide an overview of the sample applications.

XLS TO CSV CONVERTER SAMPLE APPLICATION

This sample application exhibits a pattern where a web service hosted on Java Cloud Service (JCS)-SaaS

Extension is used to transform data before using it in CPQ Cloud; in the sample, the web service simply

transforms a Microsoft Excel® file to a CSV file. Out of the box, CPQ cannot read XLSX files in the rule

engine, but it can read CSV files. Using this sample as a model, a web service can be developed to enable

Sales Representatives to use the Excel to CSV Converter web service to update a quote using additional

line item information provided in an Excel XLSX file. In another use case, a web service could be built to

allow a sales user to upload an Excel file with new corporate rates for a set of products, and then apply

the new pricing to a quote. The service exposes a REST Endpoint that takes an XLSX file and responds

with the equivalent CSV data. The CPQ application is configured by an Admin user to call this endpoint

within the appropriate workflow, so that the uploaded Excel file is transformed and used as expected by

the use case. The web service endpoint is protected using OAuth, and the CPQ web application uses a

confidential client to gain access to the service. The Secure Data Table Columns feature, delivered in

2016 R1, provides a method for securely storing credentials of the confidential client in CPQ Cloud.

QUOTE STATISTICS SAMPLE APPLICATION

This sample application displays analytic information for a quote on a UI that is embedded on the CPQ

Cloud opportunity screen. Customer information is sent to the application, which then consumes data

via CPQ Cloud REST APIs to generate information. The sample thus exhibits a strategy for embedding

JCS-SaaS Extension application UI elements in CPQ Cloud, and a strategy for CPQ REST API access via the

JCS-SaaS Extension. In this sample, the average net total across quotes for this customer is calculated

and displayed on the CPQ opportunity screen. Although this application calculates a simple statistic, it

can be used as a model to develop extended applications to provide information for Sales users. This

information can help sales users make key decisions about the quotes they are generating and make

adjustments to maximize conversion potential.

 119

KEY RESOURCES

The PaaS Integration sample applications are available from Oracle Cloud Developer Portal, part of the

platform service offerings in Oracle Cloud. Each application will provide the sample application and step-

by step instructions to:

 Understand and prepare your PaaS environment

 Research and plan the topology, technologies, and security model used to develop your
extension implementation

 Discover data objects exposed by CPQ that can be consumed by JCS - SaaS Extension

 Develop, deploy, and launch your application

 Monitor and troubleshoot your environment

https://cloud.oracle.com/developer/solutions

 120

PRE-UPGRADE CONSIDERATIONS

KNOWN FUNCTIONALITY

CONFIGURATOR WEB SERVICE SUPPORT TO BOM MAPPING

This release introduces the optional bomprice element to the Configuration web service (v1 and v2).

The response includes the BOM price, if BOM mapping is enabled and contains a non-zero BOM price.

NOTE: BOM Mapping is available on all 2016 R1 sites, refer to the BOM Mapping section for additional

information.

Sample Response:

<bm:price>

 <bm:bomPrice>$16.0000</bm:bomPrice>

 <bm:totalPrice>$45.0000</bm:totalPrice>

</bm:price>

The web service WSDL, upon regenerated, includes the newly introduced

"bomPrice" optional element:

<xsd:complexType name="ConfigurationPriceType">

 <xsd:sequence>

 ...

 <xsd:element maxOccurs="1" minOccurs="0" name="bomPrice" nillable="true"

type="xsd:string"/>

 <xsd:element maxOccurs="1" minOccurs="1" name="totalPrice"

nillable="false" type="xsd:string"/>

 </xsd:sequence>

</xsd:complexType>

SECURE URL ADDRESSES

Confirm that all references to your CPQ Cloud URL, such as in customizations or third-party tools, use

https:// in the URL.

 121

TRANSLATION

For some system-defined messages and components, some strings have been removed and others have

been added in CPQ Cloud 2016 R1. If you have created your own implementation-specific translations of

system-defined strings, some of these strings may no longer appear, and other strings may appear in

English. The strings that appear in English are new, and need to be translated.

Most of these messages and components are on the Admin side of CPQ Cloud, but you should review

both your end user and administration pages before deploying your updated installation to confirm that

all strings appear in the desired language.

MIGRATION

When migrating from one site to another using the Migration Center, both sites must use the same

major release. Content may only be migrated across minor releases within the same major release.

Migration across major releases cannot occur.

 “Major release” = A major product release, e.g. 2016 R1

 “Minor release” = A release update, e.g. 2015 R2 Update 5

RESOLVED KNOWN ISSUES

For information on bugs fixed in 2016 R1, refer to the 2016 R1 Resolved Known Issues document

available on My Oracle Support and the CPQ Cloud Online Help.

TRANSLATION STATUS

CPQ Cloud supports the consumption of both single and multi-byte character sets. Submit a service

request on My Oracle Support to enable your site for a new language.

For the following languages, a translation of the CPQ Cloud user interface is available for both the

platform and the reference application:

 Chinese (Simplified) [China]

 Chinese (Traditional) [Taiwan]

 Czech [Czech Republic]

 Danish [Denmark]

 Dutch [Netherlands]

 English

 Finnish [Finland]

 French

 French [Canada]

 German

 Hungarian [Hungary]

 Italian

 Japanese [Japan]

 Korean [South Korea]

 Norwegian (Bokmål) [Norway]

 Polish [Poland]

 Portuguese [Brazil]

 Romanian [Romania]

 Russian [Russia]

 Spanish (Worldwide)

 Swedish [Sweden]

 Turkish [Turkey]

https://support.oracle.com/
https://support.oracle.com/

POST-UPGRADE CONSIDERATIONS

Upgrade and test all test instances on Oracle CPQ Cloud 2016 R1 before upgrading to production.

BROWSER SUPPORT

CPQ Cloud supports all browser versions that meet the criteria of the Oracle Software Web Browser

Support Policy.

SUPPORTED BROWSERS

Windows

 Major releases of Google Chrome upon general browser availability and until Google no
longer supports the version

 Major releases of Mozilla Firefox upon general browser availability and until Mozilla no
longer supports the version

 Major releases of Internet Explorer/Microsoft Edge within nine months of general browser
availability and until Microsoft no longer supports the version

Mac OS X

 Major releases of Google Chrome upon general browser availability and until Google no
longer supports the browser version

 Major releases of Mozilla Firefox upon general browser availability and until Mozilla no
longer supports the version

 Major releases of Safari within nine months of general browser availability and until Apple
no longer supports the version

Android

 Major releases of Google Chrome upon general browser availability and until Google no
longer supports the browser version

iOS

 Major releases of Safari within nine months of general browser availability and until Apple
no longer supports the browser version.

If you experience issues using a supported browser version, open a ticket on My Oracle Support to

resolve the issue. If an issue arises when using a supported browser, use a certified browser version until

a fix is delivered. Certified browsers are selected based on current market share and are thoroughly

tested to work with the current version’s standard functionality.

https://support.oracle.com/

CERTIFIED BROWSERS

Windows

 Google Chrome 51.x

 Mozilla Firefox 47.x

 Internet Explorer 11.x

Mac OS X

 Google Chrome 51.x

 Mozilla Firefox 47.x

Android

 Operating System: Android Lollipop 5.x

 Browser: Google Chrome 51.x

 Screen resolution: 2560 x 1600

iOS

 Operating System: iOS 9.x

 Browser: Safari 9.x

 Screen resolution: 2048 x 1536

NOTE: Compatibility issues with the selected browsers may exist when sites contain additional

JavaScript, alternate CSS, or other custom functionality. Customizations may require add-on work.

Contact My Oracle Support to determine the availability of workarounds and minor fixes.

https://support.oracle.com/epmos/faces/DocumentDisplay?_afrLoop=489213601970654&id=1991064.1&_afrWindowMode=0&_adf.ctrl-state=16e26aoy9_529

SALESFORCE MANAGED PACKAGE SUPPORT

CPQ Cloud no longer releases updates to the Salesforce Managed Packages prior to v7.0. With the

release of 2016 R1, only Managed Packages v7.x are officially supported. Although Salesforce

integrations that use a Managed Package prior to v7.0 are still expected to function, new issues that

arise in these versions are not addressed by CPQ Cloud.

TRAINING

Please refer to the release documentation for all versions between your current version and the version

to which you are upgrading to see all new functionality, resolved known issues, and functional known

issues.

Refer to the CPQ Cloud Online Help to become familiar with the new features introduced in Oracle CPQ

Cloud 2016 R1. For additional help, see My Oracle Support.

Verify any information not explicitly mentioned in this document as supported by the software against

the product help for Oracle CPQ Cloud 2016 R1 or the Oracle CPQ Cloud Consulting team.

ADDITIONAL INFORMATION

For more information on Oracle CPQ Cloud, visit the Oracle CPQ Cloud documentation site.

https://support.oracle.com/
http://docs.oracle.com/cloud/latest/cpq_gs/index.html

Copyright © 2016 Oracle and/or its affiliates. All rights reserved.

This document is provided for information purposes only, and the contents hereof are subject to change without notice. This document is not warranted to be error-free, nor subject

to any other warranties or conditions, whether expressed orally or implied in law, including implied warranties and conditions of merchantability or fitness for a particular purpose.

We specifically disclaim any liability with respect to this document, and no contractual obligations are formed either directly or indirectly by this document. This document may not

be reproduced or transmitted in any form or by any means, electronic or mechanical, for any purpose, without our prior written permission.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of

SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered

trademark of The Open Group.

	Revision History
	Overview
	Release Feature Summary
	Enterprise Excellence
	Bill of Material (BOM) Mapping
	BOM Mapping Overview
	Hierarchical Relationships in BOM Mapping

	BOM Mapping Tables
	BOM Item Definition Table
	BOM Item Mapping Table
	BOM Attribute Definition Table
	BOM Attribute Mapping Table
	BOM Attribute Translation Table
	BOM Table Relationships

	BOM Administration
	BOM Administration Platform

	Bills of Materials Page
	Edit BOM Table Definition Page
	BOM Root Items Administration List Page
	BOM Item Tree Administration Page
	BOM Item Administration Page
	BOM Attribute Administration Page
	BOM Attribute Translation Administration Page
	BOM Item Tree with Validation Errors

	Declare Util Function
	BOM Mapping Rules
	Reference Information
	BOM Mapping Use Cases
	BOM Mapping System Attributes
	BML Functions for BOM Mapping
	Get BOM Function
	Save BOM Function
	Convert a Hierarchical BOM into a Flattened BOM Function
	Convert a Flattened BOM to Hierarchical BOM function
	Configuration Web Service to Support BOM Mapping

	Subscription Ordering
	Assets
	Customer Assets page

	Asset Creation
	Asset Modification
	Reconfigure
	Follow-On Orders
	Asset Termination

	Contract Negotiation
	Enable Contract Negotiation
	Create Contract From Single-Language Template
	Capture Versions of the Contract
	Generate List of Differences Between Document Versions
	Merge Approved Changes

	Secure Data Table Columns
	Incoming Data Format for Secure Columns
	Output Data Format For Secure Columns
	Secure Column Data Usage
	Adding a Secure Column to a Data Table

	Easy Administration
	Single Select Pick Lists in Configuration
	Apply Hiding Rules to a Single Select Pick List Attribute
	Use Related Rules Tab to Find References Made from a Single Select Pick List
	Display a Single Select Pick List as an Image Grid
	Use Array Set as Source of Single Select Pick List Data

	UI Designer
	Layouts List Page
	UI Designer Screen Layout
	Layout
	Attributes
	Layout Settings
	Panel Settings
	Table Settings
	Column Settings
	Button Settings

	Performance Logs Page
	Query by Example (QBE)

	BML Enhancements
	JSON Related Functions
	JSON Array Related Functions
	JSON Path Related Functions
	JSON Path Expression
	Dot Operators
	Advanced Operators
	JSON Path Examples

	Functions to Support Remote Approvals
	dict<anytype>
	bytearray()
	Getattachmentdata()
	Urlmultipartbypost()

	Generate Unique IDs Function
	URL Access Function
	Same Server Authentication
	User Session Functions
	Usersessionset()
	UsersessionGet()
	Usersessionremove()

	Global Dictionary Functions
	globaldictset()
	globaldictget()
	globaldictremove()

	Throw Error
	Apply Template
	BML Print Log

	Document Designer Enhancements
	Performance Enhancements
	Formatting and Style Enhancements
	Continuous Sections
	Conditional Background Images
	Column Break Element
	Expand All/Collapse All Buttons
	Header and Footer Margins
	Table Alignment

	Contract Negotiation Enhancements

	Long Running Thread Diagnostics
	Timeout Action Settings
	View Logs
	Performance Logs
	Slow Thread Log

	Timeout Action Settings
	Commerce Timeout Action Settings
	Configuration Timeout Action Setting

	Integration
	Salesforce1 Integration
	CPQ Cloud − eBusiness Suite (EBS) BOM Reference Integration
	Process Cloud Service (PCS) Integration
	Approvals Overview
	CPQ Approval Flow Summary
	Remote Approval Flow Summary

	Approval Sequence Selection
	Remote Approval Process Functions

	Rest APIs
	Interface Catalog
	REST API Endpoint
	REST APIs for Contract Negotiations
	DOCX Compare REST API
	DOCX Merge REST API

	REST APIs for Subscription Ordering
	Get Asset List REST API
	Get Asset REST API
	Create Asset REST API
	Update Asset REST API
	Delete Asset REST API
	Synchronize REST API
	Sample Synchronize Request Payload

	Custom Export Operations
	Export Action REST API
	Get Exported File REST API
	Custom Import Operations
	Upload File Operation REST API
	Import Action REST API
	Get Import Log File REST API

	Enhancements to Query Parameters
	Expand Query Parameter
	$like Operator Support for q Parameter

	Platform as a Service (PaaS) Integration Sample Applications
	XLS to CSV Converter Sample Application
	Quote Statistics Sample Application

	Pre-Upgrade Considerations
	Known Functionality
	Configurator Web Service Support to BOM Mapping
	Secure URL Addresses
	Translation
	Migration

	Resolved Known Issues
	Translation Status

	Post-Upgrade Considerations
	Browser Support
	Supported Browsers
	Certified Browsers

	Salesforce Managed Package Support
	Training
	Additional Information

