

Oracle CPQ with
Subscription Management
Integration Guide

Oracle CPQ Updates 21D and Later

January 2023

Copyright © 2023, Oracle and/or its affiliates

Oracle CPQ with Subscription Management Integration Guide 1

TABLE OF CONTENTS
Revision History... 3
Introduction .. 3

Purpose .. 4
Audience .. 4
Prerequisites ... 4
Acronym List ... 4

Subscription Flows Overview ..6
Product Modeling Setup ..8
Oracle CPQ Package Installation and Setup .. 10

Create OIC Integration ... 10
Install Subscription Management Package ... 11
Define Email Notifications for Subscription Renewals ... 11
Subscription Pricing Setup .. 12

OIC Integration Installation and Setup ... 13
Import Packages and Integrations... 13
Configure Oracle CPQ and OSS Connections in OIC .. 14
Configure Oracle CPQ and OSS Usage Rating Connections in OIC ... 15
Register Third Party Application for Subscription in Fusion .. 16
OIC Lookup Details ... 18
OIC Mapping Details ... 19

Oracle CPQ Field Setup ... 24
Business Unit ID Field .. 24
Subscription Profile ID Field... 24
Account Fields .. 24
Billing Frequency – Price Periodicity Field .. 25
Part Custom Fields ... 26
Layout Fields ... 27

Demo Product Setup ... 28
Install the BOM Data Table Packages .. 29
Install the Parts Package .. 29
Install the Vision Vehicles SUV Demo Product Package .. 30
Verify the Addition of All BOM Parts .. 31
Deploy the Home Page .. 31

Installed Oracle CPQ Elements ... 32
Commerce Attributes ...32
Commerce Actions ..32
Library Functions ... 40
Validation Rules ... 40
Hiding Rules .. 40
Workflow Steps and Step Transitions ... 41
Timer Configuration .. 42

Oracle CPQ Account Integration ... 43
Library Functions ... 43
Manual Data Table Changes .. 44
Add Template Dependencies to File Manager ... 45

Oracle CPQ Account Lookup Integration .. 46
Account REST API Services .. 48
Reference Accounts Integration ... 52
Account Search Data Tables .. 52

Subscription Workbench .. 54
Subscription Pricing Integration ... 59

Enable Subscription Pricing ... 59
Charges .. 59
Discounts ... 59
Pricing Engine Setup ... 60

Appendix A: Create Subscription Workflow .. 63

Oracle CPQ with Subscription Management Integration Guide 2

Appendix B: Amend Subscription Workflow .. 65
Appendix C: Add Amended Lines to Existing Subscription ... 68
Appendix D: Renew Subscription Workflow ... 69
Appendix E: Terminate Subscription Workflow ... 70
Appendix F: Commerce Attributes .. 71
Appendix G: Update Asset Timer BML .. 76
Appendix H: Customer Details BML ... 79
Appendix I: Open Transaction Line BML ... 82
Appendix J: Save BML ... 83
Appendix K: Payload Template File Content .. 84
Appendix L: Library Function BML ... 85
Appendix M: Subscription Pricing Utility BMLs ... 90
Appendix N: Implementation for Discount Effectivity Types ... 98
Appendix O: Calculate Price API ... 102
Appendix P: Troubleshooting .. 104

Manually Add BOM Parts to Oracle CPQ ... 104
Warning Message with Initial Install of Subscription Management Package .. 104
Resolve Issues with Submit Order Action.. 104
Enable the OSS Renew Event in the OIC Environment ... 105

Oracle CPQ with Subscription Management Integration Guide 3

REVISION HISTORY

DATE WHAT'S CHANGED NOTES

12 JAN 2023 Updated content in the following sections:

• Install Subscription Management
Package

• Configure Oracle CPQ and OSS Usage
Rating Connections in OIC

• Appendix P: Troubleshooting

Document revised for additional content clarification.

01 OCT 2021 All sections of the document were
updated and the following new sections
were added:

• Appendix N: Implementation for
Discount Effectivity Types

• Appendix O: Calculate Price API

Document revised for 21D support for granular pricing for
subscription products and new Vision Vehicles SUV demo
product.

07 JUL 2020 Updated content in the following sections:

• Prerequisites

• Configure Oracle CPQ and OSS End-
to-End Integration and Renew Event
Connections in OIC

Document revised for Oracle CPQ and Oracle CX Sales
product branding and content clarification.

13 SEP 2019 Added the following sections:

• Oracle CPQ Account Lookup
Integration

• Subscription Workbench

Document revised for Oracle CPQ 19B features.

21 FEB 2019 Initial document creation for Oracle CPQ 19A.

INTRODUCTION
Businesses across the industries are looking to adapt the change in buyer behavior and embrace subscription business
models. In order to address these needs, Oracle recently launched the Oracle Subscription Management cloud application. By
integrating front and back office business processes on one platform, Oracle Subscription Management allows organizations
to build predictable, recurring revenue models by providing an end-to-end subscription solution that manages billing and
revenue recognition and also informs customer-facing personnel with a complete view of purchasing behavior.

As part of the end-to-end subscription solution, Oracle CPQ 21D provides an integration with the Oracle Subscription
Management application. This allows customers to create and manage products and services they can sell using a
subscription model. The subscription model supports the ability to manage a given product or service as a recurring or usage-
based price item.

Leveraging this integration, customers can enable their sales teams to capture subscription orders and perform subscription
management activities throughout the lifecycle of these customer relationships. The integration, enabled by Oracle’s next
generation Oracle Integration Cloud (OIC) middleware, sometimes referred to as Oracle Autonomous Integration Cloud
Service (OAIC) or Integration Cloud Service (ICS), comes with a Subscription Management package that includes installable
artifacts for both Oracle CPQ and OIC.

The following functionality is available with the Subscription Management integration:

 Create a subscription in OSS by creating and submitting a Transaction in Oracle CPQ.

 Amend a subscription by changing the subscription quantity, duration, or product.

 Renew an existing subscription.

Oracle CPQ with Subscription Management Integration Guide 4

 Terminate an active subscription.

 Use the Rating/Pricing Engine to display subscription charges.

 Set up the Subscription Management integration using integration resources.

Note: Oracle Subscription Management (OSS) is a separately licensed product. Please contact your Oracle Sales
representative for more details.

Purpose
This installation guide describes how to implement the reference integration between Oracle CPQ and OSS using OIC.

Audience
This installation guide is intended for administrators responsible for setting up and configuring the Oracle CPQ - Subscription
Management solution. This guide assumes administrators have prior Oracle CPQ, OSS, and OIC administration experience.

Prerequisites
Administrators must integrate the Oracle CPQ Release 21D or later Sales Cloud Reference Application image, commonly
referred to as the “Ref App”, with the following:

 OSS Release 21D or later using OIC 15.4.3 or later middleware, which is used to establish an integration between Oracle
CPQ and OSS.

 Subscription Ordering Package which is used to support the Subscription Management amend, renew, and terminate
workflows. For additional information, refer to Doc ID 2182966.1 on My Oracle Support.

 Customer Data Management (CDM) Integration which supports account integration.

Optionally, Oracle recommends integration with Oracle CX Sales (formerly called Oracles Sales Engagement Cloud) to enable
account, user, product synchronization, and reconciliation of Oracles CX Sales opportunities with Oracle CPQ Transactions.
For information, refer to Doc ID 2015009.1 on My Oracle Support for the Oracle CPQ – Oracle CX Sales Integration Guide.

Notes:

• Administrators performing the Subscription Management installation must have the Oracle CPQ, OSS, and OIC sites
setup with administrator privileges.

• An error will not display to end users when a BML integration queries a non-existing external integration (e.g. the
CDM integration for EBS).

• For information about how to obtain any of the above prerequisites, contact an Oracle sales representative.

Acronym List
Definitions of the acronyms used within this document are provided in the below table. For additional information, refer to the
Oracle CPQ Administration Online Help.

ACRONYM DEFINITION DESCRIPTION

BML Big Machines Extensible Language A scripting tool used to capture a company's complex
business logic within Oracle CPQ Configuration and
Commerce. BML is based on many different programming
languages.

BOM Bill of Material Fulfillment systems often maintain BOMs containing complex,
multi-level part structures that differ from the Configuration
attributes used in Oracle CPQ when sales users configure
products. BOM Mapping provides a data-driven mechanism

https://support.oracle.com/epmos/main/downloadattachmentprocessor?parent=DOCUMENT&sourceId=1674718.1&attachid=1674718.1:2017R1ABOIMPGUIDEFIN&clickstream=yes
https://support.oracle.com/epmos/faces/DocumentDisplay?id=2182966.1
https://support.oracle.com/
https://support.oracle.com/epmos/faces/DocumentDisplay?id=2015009.1
https://support.oracle.com/
http://www.oracle.com/us/corporate/contact/index.html

Oracle CPQ with Subscription Management Integration Guide 5

ACRONYM DEFINITION DESCRIPTION
for mapping these differing product views. To use the
Subscription Management solution to create a subscription
from an Oracle CPQ Transaction, the subscription products
must be modeled as a BOM.

CDM Customer Data Management An integration and common object for EBS and Fusion. The
Subscription Management solution retrieves account
information from CDM, which functions as the account
master.

CPQ Configure, Price, and Quote The Oracle solution that enables companies to streamline
their entire opportunity-to-quote-to-order process, including
product selection, configuration, pricing, quoting, ordering,
and approval workflows.

EBS E-Business Suite A comprehensive set of integrated and global business
applications for managing and automating processes across
an Enterprise: EBS Customer, EBS Order Management, EBS
Material Reservation, and EBS Inventory On Hand Balance.
CDM is a common object for EBS.

Fusion PIM Product Information Management The product master for OSS subscriptions. Administrators
have the option of replacing PIM with an alternate solution
such as Salesforce.

OIC Oracle Integration Cloud The Oracle middleware used by Oracle CPQ to provide an all-
encompassing, standard Oracle solution for all integration
needs. By using OIC, system integrators can manage all Oracle
CPQ integrations from a single location with a consistent
toolset.

OSS Oracle Subscription Management Allows organizations to build predictable, recurring revenue
models by providing an end-to-end subscription solution that
manages billing and revenue recognition and also informs
customer-facing personnel with a complete view of
purchasing behavior.

WSDL Web Services Description Language When setting up Oracle CPQ and Subscription Management
Cloud connections in OIC administrators must enter the Oracle
CPQ WSDL URL that integrates with OIC.

Oracle CPQ with Subscription Management Integration Guide 6

SUBSCRIPTION FLOWS OVERVIEW
The following diagrams show the integration data flow between the involved applications in the Subscription Management
solution.

Create Subscription

Oracle CPQ with Subscription Management Integration Guide 7

Amend Subscription

Renew Subscription

Oracle CPQ with Subscription Management Integration Guide 8

PRODUCT MODELING SETUP
The steps for creating an Oracle CPQ Transaction for a subscription product mastered in PIM are summarized below and are
also included in the Oracle CPQ– Oracle CX Sales Integration through Oracle Integration Cloud Service Implementation Guide
located on My Oracle Support (Doc ID 2075213.1).

1. Integrate Oracle CPQ with Oracle CX Sales: Integrating Oracle CX Sales (formerly called Oracle Sales Engagement
Cloud) with CPQ provides customers seamless support for the entire selling cycle. The integration allows users to
create Transactions and sales orders for an opportunity originating in Oracle CX Sales.

2. Synchronize Products: Oracle CX Sales comes provisioned and fully integrated with the Oracle Fusion Product
Model module, which is used to create and manage product items for use in Oracle CPQ. Products are referred to as
parts in CPQ and as items in Oracle Product Information Management.

The synchronization process pushes or pulls new and updated products between Oracle CPQ and the Fusion Product Model.
Users can create products in the Oracle Fusion Product Model and synchronize the products into CPQ. Likewise, they can
create parts in Oracle CPQ and synchronize them into the Oracle Product Information Management.

Notes:

 To create an Oracle CPQ Transaction using the Subscription Ordering flow, users must model the subscription
product as a BOM in Oracle CPQ.

 The Subscription Management Integration supports the use of System Configuration BOMs.

 Administrators can use a root model to bundle multiple offerings of subscription products.

 Use the BOM definition to determine whether to update the old subscription or create a new subscription during the
Amend flow.

 The reference integration illustrated in this guide assumes that the customer’s Oracle CPQ environments are
provisioned with a Reference Application, also known as a “Ref App image”, which comes with a set of Commerce
attributes and actions that administrators can configure to meet their business requirements. Customers who do
not have the Reference Application deployed on their CPQ environment can create these Commerce attributes and
actions as mentioned in this guide to complete the below described flows.

 In Oracle CPQ 21C and earlier, subscription product line items under the Model part were rolled up into one Model-
level price and part number. Oracle CPQ 21D introduces a new subscription pricing structure that provides a
consistent pricing structure for subscription and non-subscription products by allowing single price type for each
line item. With the new pricing structure, a price change can be made at a more granular level since every charge is
represented with a distinct part. Every line item/part charge is able to roll-up to the Model price. Refer to Pricing
Engine Setup for price setup details.

Sample Scenario: Modeling for the Vision Vehicles SUV Subscription Product

In this sample scenario, Outright SUV Buy and SUV Lease are two Oracle CPQ subscription offerings. To create a subscription
from an Oracle CPQ Transaction, model these subscription products as a BOM. Since users can switch between products when
performing a product upgrade or downgrade from the CPQ Model Configuration page, administrators can bundle the
products with a root model and add a configurable attribute to select one of the offerings.

When a subscription is created, all product lines in the Transaction are added to the same subscription. When there is the root
model, users can track the content of the subscription using a single asset key.

Refer to Demo Product Setup for detailed information.

BOM Modeling for Mandatory and Optional Products

Companies often choose to bundle their subscription products to give more value to the customer and make the selling
process convenient for the customer. The bundle generally consists of two categories of products - the ones that are
mandatory as part of the bundle and others which are optional.

Users can add, update, or delete optional products independently during the Amend flow. All mandatory parts should be
grouped together in a model and expose options only to switch between models. There can be multiple models defined with
various flavors of mandatory products. Optional parts should expose option to configure same in configurator layout.

https://support.oracle.com/
https://support.oracle.com/epmos/faces/DocumentDisplay?id=2075213.1

Oracle CPQ with Subscription Management Integration Guide 9

Defining parts as optional in BOM definition table enables Transaction creation with BOM instance with or without optional
parts. Optional parts can be added, updated or deleted independently.

BOM Modeling for Amend Flow

When amending an existing subscription, the Amend flow can create a new subscription in OSS or apply changes to the
existing subscription in OSS. The approach is based on the flag defined in BOM and the Configurator.

To enable this functionality, create a new Commerce attribute at the Transaction Line level. Define the attribute as follows:

 Label: updateOldSubscriptionFlag

 Variable Name: oRCL_sm_updateOldSubscription

 Type: Single Select Menu. Supported values are: True and False.

In the Oracle_BomAttrMap table, make an entry as follows for each product in BOM. This configuration ensures the
updateOldSubscriptionFlag is set based on the BOM definition and configuration. Sales users can expose the
updateOldSubscription flag in the layout by defining Configurator attributes.

 targetType: LINE_ATTRIBUTE

 targetVariableName: oRCL_sm_updateOldSubscription

 SourceType: STATIC_ENTRY

 Populate BomItemMapVarName

 Populate RootBomMapVarName

Oracle CPQ with Subscription Management Integration Guide 10

ORACLE CPQ PACKAGE INSTALLATION AND SETUP
Oracle creates implementation packages as a way to distribute elements needed by customers to implement new Oracle CPQ
features. As shown in the below table, implementation packages are available to facilitate the installation of the Subscription
Management solution.

PACKAGE NAME DESCRIPTION

Oracle CPQ Subscription
Management Package

A granular migration package that works with any BOM (including System
Configuration BOM) and contains new Commerce attributes, actions, and rules
supporting Subscription Management.

OIC Integration for End to End Flow
(CPQ-OSS-Integration-21D)

The integration in OIC for creating, amending, renewing, and terminating
subscriptions.

OIC Flow for the Subscription
Management Cloud Renew Event

The integration in OIC for creating renewed Transactions in Oracle CPQ.

OIC Usage Rating Flow The OIC flow for rating usage charges for OSS by invoking the Oracle CPQ Pricing
REST API.

Populate Amend Charge Flow The integration flow that populates charge information from the original
subscription into the amended Oracle CPQ Transaction.

Create OIC Integration
Creating an OIC integration enables Oracle CPQ to connect to back office systems, on premise environments, and other Oracle
products in a consistent, enhanced manner. Before installing the pre-built Oracle CPQ packages, administrators must create
an OIC integration in the Oracle CPQ Integration Center.

Note: OIC is also known as Integration Cloud Service (ICS). When creating the OIC integration in the Integration Center,
select Integration Cloud Service as the integration type.

To create an OIC integration, perform the following steps:

1. Open the Admin Home page.

2. Select Integration Center under Integration Platform. The Integration Center opens.

3. Click Create Integration.

4. Select Integration Cloud Service from the Type drop-down.

5. Enter OSSICS in the Name field. The variable name should be oSSICS on both the source and the target site.

6. Enter the discovery URL in the following format: https://<hostname>/icsapis/v1/integrations. The

hostname is the OIC environment name.

7. Enter the username for the OIC environment in the Username field.

8. Enter the password for the OIC environment in the Password field.

9. Click Test to verify the connection.

If the status returned is “Test Connection Passed”, proceed to step 10.

10. Select the Enable Integration check box.

11. Click Save.

Oracle CPQ with Subscription Management Integration Guide 11

Install Subscription Management Package
The Subscription Management package is a granular migration package containing new elements in support of the
Subscription Management solution. As a granular migration package, administrators can add or remove specific elements
from the package or remove specific elements when importing the package.

To install the Subscription Management package, perform the following steps:

1. Download the Subscription Management package (i.e. CPQ_OSS_Package_21D_1.zip) from My Oracle Support (Doc ID
2508999.1).

2. Open the Admin Home page.

3. Select Migration under Utilities.

4. Select Import Package from the Select A Mode drop-down. The Upload Package dialog opens.

5. Click Browse and navigate to the Subscription Management package.

6. Click Upload.

7. Click Migrate.

When the migration completes, check the migration logs for errors.

Note: When installing the Subscription Management package for the first time, and the OIC site does not have
Subscription Management-related integration installed yet, the migration succeeds and Commerce migration displays a
warning message. Refer to Appendix P: Troubleshooting for more information.

Define Email Notifications for Subscription Renewals
Administrators can define email notifications to alert subscription owners when a subscription is renewed. For additional
information about this email notification, refer to Appendix D: Renew Subscription Workflow.

To define email notifications for subscription renewals, perform the following steps:

1. Open the Admin Home page.

2. Select Process Definition under Commerce and Documents. The Processes page opens.

3. Select Steps from the Navigation menu next to the applicable Commerce process.

Note: The Oracle Quote to Order Commerce process is included with the Oracle CPQ Ref App. If customers have chosen
to overwrite the Oracle Quote to Order Commerce process with an alternate Commerce process, select the name of the
alternate process.

4. Click List.

5. Expand the Start step.

6. Expand Admin.

7. Expand Save.

8. Double click Save -> In Progress.

9. Click Define Notifications from the bottom right corner. The Add Notification Rule page opens.

10. Select the Send Email option.

11. Select the Advanced Recipient Email Address(es) option under Recipient(s).

12. Click Define Function.

13. Change the email ID on line 4 of the BML and set it as required.

https://support.oracle.com/
https://support.oracle.com/epmos/faces/DocumentDisplay?id=2508999.1
https://support.oracle.com/epmos/faces/DocumentDisplay?id=2508999.1

Oracle CPQ with Subscription Management Integration Guide 12

14. Click Save and Close.

15. Repeat the above steps for the Start step and the Sales User.

Subscription Pricing Setup
The Subscription Management package comes with a Subscription Pricing configuration for the sample BOM for the Vision
Vehicles service. If you are adding new products, complete the following actions for new products in BOM data:

 Define the price definition for products in Oracle Pricing Data Tables.

 Define tier information, if any, for products in the Pricing Data Table.

 You can re-use the existing Pricing profile, enhance condition to run pricing for products in BOM, or add a new Pricing
profile.

Note: Refer to Pricing Engine Setup for detailed information.

Oracle CPQ with Subscription Management Integration Guide 13

OIC INTEGRATION INSTALLATION AND SETUP
This section contains information about importing the OIC Integrations into your OIC environment and creating web service
connections between Oracle CPQ and OSS.

 OIC Integration for End-to-End Flow (CPQOSSIntegrations_21D.par): Contains the integrations in OIC for the Create
Subscription, Amend Subscription, Renew Subscription, and Terminate Subscription workflows.

 OIC Flow for OSS Renew Event: Contains the integration for creating a new Transaction in Oracle CPQ based on an
OSS Renew event.

 OIC Usage Rating Flow: Provides the rating usage charges for OSS by invoking the Oracle CPQ Pricing API. Refer to
Appendix O: Calculate Price API.

Note: For information about the REST APIs used in these integrations, refer to the OIC Mapping Details section of this
installation guide.

Import Packages and Integrations
Import the OIC integrations into OIC to create integrations between Oracle CPQ and OSS.

To import the OIC package into OIC, perform the following steps:

1. Download the OIC integrations from My Oracle Support (Doc ID 2508999.1).

2. Log in to the OIC site as an admin user.

3. Click Integrations.

4. Click Packages.

5. From the top right corner, click Import. The Import Package dialog opens.

6. Select CPQOSSIntegrations_21D.par.

7. Click Import.

To import the OIC integrations into OIC, perform the following steps:

1. Download the OIC integrations from My Oracle Support (Doc ID 2508999.1).

2. Log in to the OIC site as an admin user.

3. Click Integrations.

4. Click Integrations again.

5. From the top right corner, click Import. The Import Integration dialog opens.

6. Select the downloaded Renew integration.

7. Click Import.

8. Repeat the above steps for the Rate Usage integration.

Note: If an integration with the same name is already present in the OIC environment, deactivate the integration before
replacing it.

https://support.oracle.com/
https://support.oracle.com/epmos/faces/DocumentDisplay?id=2508999.1
https://support.oracle.com/
https://support.oracle.com/epmos/faces/DocumentDisplay?id=2508999.1

Oracle CPQ with Subscription Management Integration Guide 14

Configure Oracle CPQ and OSS Connections in OIC
Configure connections for the integration(s) imported from Import Packages and Integrations

Note: Record the integrations designated from the Import Packages and Integrations. Each integration provides a
connection icon that you can hover over to get connection name.

The OIC CPQ-OSS-Integration-21D Integration creates two connections required for Oracle CPQ and OSS.

CPQ SOAP Connection - https://<CPQ HOSTNAME>.com/v2_0/receiver/commerce/oraclecpqo?wsdl

OSS REST Connection - https://<OSS_HOSTNAME>.com/crmRestApi/resources/latest

The Renew Event Integration creates four connections in OIC. These connections are created with the integration import and
require set up of end point and security credentials, as follows:

OSC225_CONMGR (or any other name): Oracle CX Sales Connection. This creates a Renewal Opportunity in the CX Sales CRM
as part of Renewal Flow initiated by OSS.

 Interface catalog url:
https://<OSC_HOSTNAME>/helpPortalApi/otherResources/latest/interfaceCatalogs

 Service catalog WSDL url : https://<OSC_HOSTNAME>/fscmService/ServiceCatalogService?wsdl

 OSC Events Catalog URL : https://<OSC_HOSTNAME>/soa-infra

 Security credential: {username/password of the OSC environment}

CPQ_SLC06EIY_ABO: REST Connection.

 Connection Type : REST API URL

 End point Connection url: https: //<CPQ_HOSTNAME>/rest/v13/assets

 Security cred: {username/password of the CPQ site}

CPQ_SLC06EIY_TRANSACTION: REST Connection.

 End point : Connection Type : REST API URL

 Connection url : https://<CPQ_HOSTNAME>/rest/v13/commerceDocumentsOraclecpqoTransaction

 Security cred: {username/password of the CPQ site}

FUSION_SUB: REST Connection.

 Connection url : https://<OSC_HOSTNAME>/crmRestApi/resources/latest

 Security credential: {username/password of the OSC environment}

To configure the Oracle CPQ and OSS connections in OIC, perform the following steps:

1. Log in to OIC as an admin user.

2. Click Connections. Search and open the connection.

3. Click Configure Connectivity.

4. Update the connection URL to point to the new host.

5. Click OK.

6. Click Configure Security to specify the login credentials to access the application.

7. Provide the user credentials.

8. Click OK.

9. Click Test from the top right corner.

10. Click Save when the connection is complete.

Oracle CPQ with Subscription Management Integration Guide 15

11. After the integration and connections are setup, activate the newly imported integration by clicking the active icon
corresponding to the integration name. After successfully activating the integration, an activation window displays.

Tip: Oracle recommends that the Enable Tracing and Include Payload checkboxes are selected when activating an
integration. Doing so will capture valuable troubleshooting information that may be useful in troubleshooting a failed
activation.

Sample Subscription CPQ-OSS-Integration-21D Activation Window

12. Click Activate. A message displays at the top of the page after a successful activation.

Configure Oracle CPQ and OSS Usage Rating Connections in OIC
Configure connections for the integration(s) imported from Import Integrations.

Note: Record the integrations designated from the Import Integrations. Each integration provides a connection icon that
you can hover over to get connection name.

To configure the Oracle CPQ and OSS Usage Rating connections in OIC, perform the following steps:

1. Log in to OIC as an admin user.

2. Click Connections. Search and open the connection.

3. Click Configure Connectivity.

4. Update the connection URL to point to the new host. For example:
https://<OIC_hostname>.integration.ocp.oraclecloud.com:443/ic/api/integration/v1/flows/

rest/SUBSCRIPTIONUSAGERATING19A/1.0/price.

5. Click OK.

6. Click Configure Security to specify the login credentials to access the application.

7. Provide the user credentials.

8. Click OK.

9. Click Test from the top right corner.

10. Click Save when the connection is complete.

Oracle CPQ with Subscription Management Integration Guide 16

11. After the integration and connections are setup, activate the newly imported integration by clicking the toggle button
corresponding to the integration name. After successfully activating the integration, an activation window displays.

Tip: Oracle recommends that the Enable Tracing and Include Payload checkboxes are selected when activating an
integration. Doing so will capture valuable troubleshooting information that may be useful in troubleshooting a failed
activation.

Sample Usage Rating Activation Window

12. Click Activate. A message displays at the top of the page after a successful activation.

Note: Starting from Oracle CPQ 21D map quantity field of OSS to CPQ’s Usage Value (oRCL_pRC_usageValue) for
products of type Usage.

Register Third Party Application for Subscription in Fusion
To register third party application for subscription in Fusion, perform the following steps:

1. Log in to OIC as an admin user.

2. Click Integrations.

3. Click Integrations again.

4. Click on the SubscriptionUsageRating integration name.

5. Click the Menu icon in the right-hand portion of the page and select Primary info.

6. Copy the Identifier value and make note of the Version (for example, 1.0).

7. Log in to the Fusion application using your FSM setup credentials.

8. Click the Menu icon in the top-left corner of the Fusion page.

9. Click Others.

10. Click Setup and Maintenance.

Oracle CPQ with Subscription Management Integration Guide 17

11. Click the Down arrow in the top-left portion of the page just above the Functional Area list.

12. Select Sales from the drop-down.

13. Enter "register" in the Search Tasks field and click the Search icon to search for the Register Third Party
Applications for Subscription task.

14. Click Register Third Party Applications for Subscription in the popup window. The Register Third Party
Applications for Subscription task is highlighted in the Task list.

15. Click on the link for Register Third Party Applications for Subscription. The Register Third Party Applications for
Subscription page displays.

16. Click Add (+) to add a new row.

Fusion – Register Third Party Applications for Subscriptions

17. Select Pricing as the Application Type.

18. Enter CPQ as the Application Name.

19. Select REST in the Integration Type drop-down.

20. Enter the endpoint URL into the Endpoint URL field.
The endpoint URL follows the following format:
https://<OIC_HOSTNAME>.integration.ocp.oraclecloud.com:443/ic/api/integration/v1/flows/
rest/<IDENTIFIER>/,VERSION>/price

For example:
https://<OSS_hostname>.integration.ocp.oraclecloud.com:443/ic/api/integration/v1/flows/
rest/SUBSCRIPTIONUSAGERATING19A/1.0/price

Note: The IDENTIFIER is case sensitive.

21. Enter your User Name.

22. Enter your Password.

23. Click Save.

Oracle CPQ with Subscription Management Integration Guide 18

OIC Lookup Details
CPQ-OSS-PriceTypeDVM

CPQ-PriceType OSS-PriceType

One Time ORA_ONE_TIME

Recurring ORA_RECURRING

Usage ORA_RECURRING_USAGE

CPQ-OSS-PricePeriodicityDVM

CPQ-PricePeriodicity OSS-PricePeriodicity

Per Month 0zG

Per Year 0zE

CPQ-OSS-AdjustmentTypeDVM

CPQ-AdjustmentType OSS-AdjustmentType

Percent Off ORA_DISCOUNT_PERCENT

Amount Off ORA_DISCOUNT_AMOUNT

Price Override ORA_PRICE_OVERRIDE

Oracle CPQ with Subscription Management Integration Guide 19

OIC Mapping Details
This section contains the OIC mapping details for the OSS payload coming from Oracle CPQ.

SUBSCRIPTION

OSS PAYLOAD
ATTRIBUTE

DATABASE
DATA TYPE MAPPED TO CPQ ATTRIBUTE COMMENTS

SubscriptionNumber VARCHAR2(120
CHAR)

transactionID_t Concatenation is done to keep
Subscription number unique each
time.

SourceSystem VARCHAR2(30
CHAR)

Hard Code 'CPQ'

SourceKey NUMBER(18,0)

VARCHAR2(120
CHAR)

transactionId_t

BusinessUnitId NUMBER(18,0) BuId(BusinessUnitId_t) One time set up field. The
BusinessUnitId is unique for the given
site.

subscriptionProfield NUMBER(18,0) subscriptionProfileId_t)

PrimaryPartyId NUMBER(18,0) partyId

Pricing System VARCHAR2(30
CHAR)

"CPQ"

Currency VARCHAR2(15
CHAR)

currency_t

StartDate DATE defaultRequestDate_t

EndDate DATE SubscriptionEndDate_t

BillingFrequency VARCHAR2(30
CHAR)

oRCL_billingFrequency_t

BillToAccountId NUMBER(18,0) accountNumber_t

BillToSiteUseId NUMBER(18,0) billToSiteUseId_t

GenerateBilligSchedule VARCHAR2 "Y" "Y" value instructs OSS to generate
the bill schedule

Oracle CPQ with Subscription Management Integration Guide 20

PRODUCTS

This entity is mapped from the Transaction Line when the subscription type is "subscription". Fields are mapped from the
Transaction Line. Product is an array in the OSS payload.

FIELDS IN
SUBSCRIPTION
PAYLOAD

FIELD TYPE
FIELD IN CPQ TRANSACTION
LINE

COMMENTS

LineNumber VARCHAR2(300
CHAR)

_part_id + “-“ + _sequence_number

ProductName VARCHAR2(300
CHAR)

_part_number Ensure the CPQ partNumber is
the same as the itemNumber in
PIM when creating a part in
CPQ.

Quantity NUMBER requestedQuantity_l

ItemUnitOfMeasure VARCHAR2(15
CHAR)

requestedUnitOfMeasure_l

StartDate DATE contractStartDate_l

EndDate DATE contractEndDate_l

SourceKey NUMBER(18,0)

VARCHAR2(120
CHAR)

transactionID_l

SourceNumber NUMBER(18,0)

VARCHAR2(120
CHAR)

transactionNumber_t

SourceLineKey VARCHAR2(120
CHAR)

_sequence_number

ExternalAssetKey VARCHAR2(120
CHAR)

itemInstanceId_l

ExternalRootAssetKey VARCHAR2(120
CHAR)

rootAssetKey_l

ExternalPriceBookId VARCHAR2(120
CHAR)

PriceBookId from CPQ Not mandatory

ExternalPriceBookName VARCHAR2(30
CHAR)

PriceBookNameFrom CPQ Not mandatory

Oracle CPQ with Subscription Management Integration Guide 21

CHARGES

In Oracle CPQ, charge information is part of the CPQ Transaction Line. Subscription pricing populates charge fields.

OSS PAYLOAD
FIELD

DATA TYPE MAPPED TO CPQ
TRANSACTION LINE FIELD

COMMENTS

ExternalKey NUMBER(18,0)

VARCHAR2(120
CHAR)

_part_number Part number from charge line in CPQ.

ExternalParentKey NUMBER(18,0)

VARCHAR2(120
CHAR)

_part_number Part number from charge line in CPQ.

ChargeName VARCHAR2(300
CHAR)

_part_number Part number from charge line in CPQ.

PriceType VARCHAR2(300
CHAR)

priceType_l Lookup : CPQ-OSS-PriceTypeDVM

PricePeriodicity VARCHAR2(30
CHAR)

pricePeriod_l
Lookup: CPQ-OSS-PricePeriodicityDVM

UnitListPrice NUMBER listPrice_l

BlockSize NUMBER oRCL_pRC_blockSize Usually a static value defined as a Line
attribute in BOM attribute table.

Allowance NUMBER oRCL_pRC_blockAllowance Usually a static value defined as a Line
attribute in BOM attribute table.

TieredFlag VARCHAR2(3
CHAR)

oRCL_pRC_tierd_l Y/N

TierType VARCHAR2(30
CHAR)

oRCL_pRC_tiertype_l

Oracle CPQ with Subscription Management Integration Guide 22

CHARGE TIERS

OSS PAYLOAD
FIELD

DATA TYPE SOURCED FROM CALCULATED
INFORMATION IN CPQ
TRANSACTION LINE

TYPE

Tier Sequence NUMBER oRCL_pRC_tierInfo.oRCL_pRC_tierSe
quence

Integer

TierFrom NUMBER oRCL_pRC_tierInfo.oRCL_pRC_tierFr
om

Integer

TierTo NUMBER oRCL_pRC_tierInfo.oRCL_pRC_tierTo

Integer

ListPrice NUMBER oRCL_pRC_tierInfo.oRCL_pRC_tierList

Price

PriceFormat VARCHAR2(30
CHAR)

oRCL_pRC_tierInfo.
oRCL_pRC_tierPriceFormat

Single Select Menu:
1) PER UNIT [ORA_PER_UNIT]
2) PER BLOCK [ORA_PER_BLOCK]

BlockSize NUMBER oRCL_pRC_tierInfo.
oRCL_pRC_tierBlockSize

Oracle CPQ with Subscription Management Integration Guide 23

CHARGE ADJUSTMENTS

A charge adjustment is an array inside a charge. The source for this entry is the "orcl_prc_discounts" Data Table.

OSS PAYLOAD
FIELD

DATA TYPE CPQ LINE LEVEL
ATTRIBUTES

TYPE

AdjustmentSequence NUMBER 1 Integer

As we are supporting only 1 discount per line,
the sequence number is defaulted to 1
always.

AdjustmentName VARCHAR2(300
CHAR)

"CPQ Adjustment" Text

As we are supporting only 1 discount per line,
the adjustment name is defaulted to “CPQ
Adjustment” always.

AdjustmentType VARCHAR2(30
CHAR)

customDiscountType_l
Look Up: CPQ-OSS-AdjustmentTypeDVM

AdjustmentValue NUMBER "customDiscountValue_l Integer

AdjustmentBasis VARCHAR2(30
CHAR)

“ORA_LIST_PRICE”
We always support discounts on List Price

AdjustmentEffectivity VARCHAR2(30
CHAR)

discountEffectivityType_l All Term [ORA_ALL_TERM]. The default
implementation supports only All Term. But
customer can implement the other options
like

 Periods from Start Date
[ORA_PERIODS_FROM_START_DATE]
 Periods before End Date
[ORA_PERIODS_BEFORE_END_DATE]
 Date
[ORA_PERIODS_BEFORE_END_DATE]
 Specific periods
[ORA_SPECIFIC_PERIODS]

Refer Appendix N: Implementation for
Discount Effectivity Types.

Oracle CPQ with Subscription Management Integration Guide 24

ORACLE CPQ FIELD SETUP
Oracle CPQ administrators must setup fields in the CPQ environment and obtain the values for these fields from the OSS
administrator. Setting up these fields is a one-time setup step.

Business Unit ID Field
The Business Unit Id, or organization Id, uniquely identifies a Fusion site. Administrators must setup this field in Oracle CPQ
on a per-site basis. For new sites, configure the field in Fusion. The Commerce process has a ‘BuId’ attribute at the Transaction
level. Administrators must obtain the value for this field from the OSS administrator and populate the attribute in the
Transaction accordingly.

Subscription Profile ID Field
The Subscription Profile Id is an OSS attribute that determines the nature of the subscription created. Obtain the Subscription
Profile Id from the OSS administrator. Then, populate the “Subscription Profile Id” value in the Transaction of the Commerce
process.

Account Fields
The account information provided during subscription creation is used for subscription billing purposes. With the Subscription
Management solution, a sales user can obtain the account information for a customer by entering a customer company name
and clicking Customer Details. The fields listed below are populated and are mapped to the associated OSS fields. These field
mappings support the creation of a new subscription in OSS based on the information provided in the CPQ Oracle
Transaction. The fields should be added to the Customer Details tab of the Transaction layout.

 Party ID: Associated with the primary PartyId field in OSS.

 Account Number: Associated with the BillToAccountId field in OSS.

 Bill To Site Use ID: Associated with the BillToSiteNumber field in OSS.

 Customer ID: Associated with the _customer_id attribute in CPQ for ABO use.

Sample Image of Customer Details Tab

Oracle CPQ with Subscription Management Integration Guide 25

Billing Frequency – Price Periodicity Field
This is a menu field that provides the Billing Frequency for a subscription. The Billing Frequency can be customized to fit the
specific customer environment. The Billing Frequency option can be obtained using the following REST API call:

https://<OSS-host-name>.us.oracle.com/crmRestApi/resources/latest/timeCodeUnits

Billing Frequency Field

Note: The conversion rate multiplied by the BaseUOMCode provides the UserUOMCode, which is populated in the
Billing Frequency menu.

Oracle CPQ with Subscription Management Integration Guide 26

Part Custom Fields
This section contains the part custom fields that CPQ administrators must configure as a one-type setup step.

Part Field Setup – Enable Subscription Pricing

Subscription Type

To help identify charge line and product, set up “_part_custom_field9” as a Product Type configured as shown below. The
field is empty for model lines. For subscription product types, enter the value as "subscription".

Product Type Field Setup

Note: Use _part_custom_field9 to identify a product. Administrators must mark any subscription products as
'subscription' in _part_custom_field9. Subscription products will have value "subscription" for this field.

Part Custom Field Setup

Oracle CPQ with Subscription Management Integration Guide 27

Layout Fields
This section contains the attributes and actions that need to be added in the Layout. Refer to Appendix F: Commerce
Attributes.

Transaction Level Attributes

The following attributes are required for troubleshooting purposes only.

 Subscription Id

 Subscription Status

 Subscription Profile Id

 RenewDraftSubscriptionNumber

Transaction Level Actions

The following Actions are required to be added in the Layout:

 Submit Order

Note: The attributes and actions defined as Account Fields must be added to the Transaction Level – Customer Detail.

Transaction Line Attributes

The following attributes need to be added to the Line Item Grid in the Layout:

 fulfillment status

 ActionCode

 InstanceId

 RootAssetKey

 Change Reason

 Change Code

 Amend Replacement

 Update Old Subscription

 Tier Type

 Tiered

 Periodicity

 Quantity (requestedQuantity_l)

 Contract Periods

 Contract Start Date

 Contract End Date

 Discount (customDiscountValue_l)

 Discount Type (customDiscountValue_l)

 Custom Discount Amount(customDiscountAmount_l)

 Net Price

 Net Amount

 Contract Value (List)

 Contract Discount

 Contract Value (Net)

Oracle CPQ with Subscription Management Integration Guide 28

Note: The fulfillment status and ActionCode attributes are already in the Line Item Grid if the site has been configured
for ABO. If they are not already in the Line Item Grid, they should be added.

Edit Transaction Line Attributes

The following attributes needs to be added to the Line Item Layout.

 Amend Replacement

 Tier Array

 Block Size

 Block Allowance

 Unit List Price

DEMO PRODUCT SETUP
Oracle provides a Vision Vehicles SUV demo product, which is a sample Configuration in Oracle CPQ. Use the Vision Vehicles
SUV demo product to understand the functionality available in the Subscription Management solution. To understand the
various Subscription Management flows supported, refer to Appendix A: Create Subscription Workflow, Appendix B: Amend
Subscription Workflow, Appendix C: Add Amended Lines to Existing Subscription Workflow, Appendix D: Renew Subscription
Workflow, and Appendix E: Terminate Subscription Workflow.

PACKAGE NAME FILE NAME DESCRIPTION

Demo_Product_Vision_Vehicles Demo_Product_Vision_Vehicles_1.zip The data used for the Vision Vehicles SUV
demo product.

BOM Data datatable_ItemDef.zip

datatable_ItemMap.zip

datatable_AttrMap.zip

datatable_AttrDef.zip

The BOM data used for Data Tables.

Parts Part1.zip The parts added for the Vision Vehicles
demo product with product type as
subscription:

• VEHICLE

o Crossover SUV Subscription

o Sports SUV Subscription

o Luxury SUV Subscription

o Crossover Outright Buy

o SUV Charging Station use

o Sirius XM Radio

o WiFi Service

o Standard Maintenance Plan

o Premium Maintenance Plan

Note: The packages shown in the above table are optional packages. Administrators must install the packages to make
the Vision Vehicles SUV demo product visible in Oracle CPQ.

Oracle CPQ with Subscription Management Integration Guide 29

Install the BOM Data Table Packages
The BOM Data Table packages adds the demo product data into Oracle BOM tables, such as the Oracle_BomItemDef,
Oracle_BomItemMap, and Oracle_BomAttrMap BOM data tables. When the BOM Data Tables packages are installed, the BOM
Configuration for Vision Vehicles SUV model is added to the sample Configuration.

To Install BOM Data Tables package, perform the following steps:

1. Download the BOM Data Table packages (i.e. datatable_ItemDef.zip, datatable_ItemMap.zip, datatable_AttrMap.zip)
from My Oracle Support (Doc ID 2508999.1).

2. Open the Admin Home page.

3. Select Data Tables under Developer Tools. The Data Tables page opens.

4. Click File and select Import from the Options drop-down.

5. Click Browse.

6. Select the downloaded zip file datatable_ItemDef.zip.

7. Select Oracle BOM Tables as the Destination Folder. Create the folder if it is not present.

8. Click Import.

9. Repeat steps 4 through 8 for each of the BOM data table files (i.e. datatable_ItemMap.zip and
datatable_AttrMap.zip).

10. Click Menu and select Status Log to check the status of the uploaded files.

11. Check the log corresponding to the uploaded files for errors.

12. Double-click on each data table (Oracle_BomItemDef, Oracle_BomItemMap, and Oracle_BomAttrMap) from the
Navigation and click Schema tab.

13. Select index and key columns for VariableName field.

14. Save and Deploy.

Install the Parts Package
The Parts package adds parts for the Vision Vehicles SUV demo product. When the Parts package is installed, the parts are
added to the sample Configuration based on the selections. To view an example of these services in the CPQ sample
Configuration, refer to Appendix A: Create Subscription Workflow, Appendix B: Amend Subscription Workflow, Appendix D:
Renew Subscription Workflow, and Appendix E: Terminate Subscription Workflow.

To install the Parts package, perform the following steps:

1. Download the Parts package (i.e. Part1.zip) from My Oracle Support (Doc ID 2508999.1).

2. Open the Admin Home page.

3. Select Upload under Utilities. The Upload Files List page opens.

4. Click Browse.

5. Select the downloaded zip file.

6. Click Add.

7. Click Upload.

8. Click Refresh to check the status of the uploaded file.

9. Check the log corresponding to the uploaded file for errors.

https://support.oracle.com/
https://support.oracle.com/
https://support.oracle.com/
https://support.oracle.com/
https://support.oracle.com/epmos/faces/DocumentDisplay?id=2508999.1

Oracle CPQ with Subscription Management Integration Guide 30

Install the Vision Vehicles SUV Demo Product Package
The BOM Package contains the product data used for the Vison Vehicles SUV demo product.

To install the Package, perform the following steps:

1. Download the package (i.e. Demo_Product_Vision_Vehicles_1.zip) from My Oracle Support (Doc ID 2508999.1).

2. Open the Admin Home page.

3. Select Migration under Utilities.

4. Select Import Package from the Select A Mode drop-down. The Upload Package dialog opens.

5. Click Browse and navigate to the demo package.

6. Click Upload.

7. Click Migrate. When the migration completes, check the migration logs for errors.

8. Navigate to the Admin Home page.

9. Select Catalog Definition under Products. The Supported Products page opens.

10. Click List. The Supported Product Families page opens.

11. Click Add.

12. Select Vision Vehicles.

13. Click Save.

14. Open the Admin Home page.

15. Select Catalog Definition under Products. The Supported Products page opens.

16. Click List. The Supported Product Families page opens.

17. Click List next to Vision Vehicles. The Product Line Administration List page opens.

18. Select Models from the Navigation drop-down next to Consumer Vehicles.

19. Click List. The Model Administration List page opens.

20. Select BOM Mapping from the Navigation drop-down next to SUV.

21. Click List. The BOM Mapping: Rules List page opens.

22. Verify that the Default BOM Rule exists.

Default BOM Rule

https://support.oracle.com/
https://support.oracle.com/epmos/faces/DocumentDisplay?id=2508999.1

Oracle CPQ with Subscription Management Integration Guide 31

Verify the Addition of All BOM Parts
To verify that all of the BOM parts are added to the Oracle CPQ site, perform the following steps:

1. Open the Admin Home page.

2. Select BOM under Products. The BOM Administration Platform opens.

3. Select BOM Root Item List under BOM Products. The BOM Root Items Administration List page opens.

4. Click on the variable names to verify that parts were added. The BOM Item Tree Administration page opens. Missing
parts are shown in red on this page.

Note: If parts are missing, follow the steps in the Troubleshooting section of this installation guide to manually add the
missing parts to your Oracle CPQ site.

Deploy the Home Page
Deploy the Oracle CPQ Home page to make the changes applied by the Subscription Management package available on the
Oracle CPQ Home page.

To deploy the Home page, perform the following steps:

1. Open the Admin Home page.

2. Select Home Page under Styles and Templates. The Home Page Setup page opens.

3. Verify that the Product Family definition is accurate in the Home page:

Expand Vision Vehicles under Catalog.
Select the Model Punch-in icon next to Consumer Vehicles. The Model Punch-ins List opens.
Make sure SUV exists in the Model Punch-ins List. If it does not exist, add it.

4. Click Deployment Center from the Home Page Setup page. The Deployment Center opens.

5. Click Deploy.

6. Click Refresh to verify the successful deployment of the Home page.

Note: Be sure to register the demo BOM in the ABO table (oracle_abopart2Model) with the following:

• Partnumber: VEHICLE

• ProductLine: consumerVehicles

• Segment: visionVehicles

• Model: sUV

Oracle CPQ with Subscription Management Integration Guide 32

INSTALLED ORACLE CPQ ELEMENTS
Installing the Oracle CPQ Subscription Management package simplifies the implementation of the Subscription Management
solution by adding the below elements to the Oracle CPQ Ref App.

 Commerce Attributes

 Commerce Actions

 Library Functions

 Validation Rules

 Hiding Rules

 Steps and Step Transitions

 Timer Configuration

Commerce Attributes
The installation of the Oracle CPQ Subscription Management package adds several attributes to the Commerce process and
modifies several existing attributes included with the Oracle CPQ Release 18B or later Ref App. For a complete list of the
Commerce attributes used by the Subscription Management solution, refer to Appendix F: Commerce Attributes.

Commerce Actions
The installation of the Oracle CPQ Subscription Management package adds or updates the following actions to the Commerce
process:

 Submit Order

 Update Asset Timer

 Customer Details

 Open Transaction Line

 Transaction - Save

 Transaction Line - Save

Note: The Oracle Quote to Order Commerce process is included with the Oracle CPQ Ref App. If customers have chosen
to overwrite the Oracle Quote to Order Commerce process with an alternate Commerce process, the Oracle CPQ package
adds the actions to the alternate process.

SUBMIT ORDER

The Submit Order action is associated with the Submit Order button on the Transaction page. The action is used to create a
subscription in OSS.

Create Subscription Integration of Type Integration Cloud Service

Administrators must create an Integration Cloud Service type integration that invokes OIC to initiate the Create Subscription
workflow.

To create the integration, perform the following steps:

1. Open the Admin Home page.

2. Select Process Definition under Commerce and Documents. The Processes page opens.

3. Locate the Commerce process associated with the Subscription Management integration.

4. Select Integrations from the associated Navigation menu.

5. Click List. The Integrations page opens.

Oracle CPQ with Subscription Management Integration Guide 33

6. Click Add. The Select Integration Types page opens.

7. Select the Integration Cloud Service option.

8. Click Next. The Edit Integration page opens.

9. Populate the following fields:

• Name: Create Subscription

• Variable Name: createSubscription

• Description: Enter an optional description.

• Timeout: Enter a value between 0 and 600,000 milliseconds.

• Action: Select the Import option

• Services: Select CPQ-OSS-Integration-21D

10. Click Add.

Note: The Timeout value is used when calling the CPQ-OSS-Integration-21D services. If the service does not respond
within the specified time, Oracle CPQ aborts the web service call and invokes an error.

Create Subscription Integration

An image of the Configuration for the Create Subscription integration is provided below:

Configuration for Create Subscription Integration

Once the Create Subscription integration is created, the integration is added to the Submit Order action’s integration tab.

Create Subscription Integration in Submit Order Integration Tab

Oracle CPQ with Subscription Management Integration Guide 34

UPDATE ASSET TIMER

The Update Asset Timer action is used to configure a Timer to create an asset on a requested date. The BML used by the
Update Asset Timer action is included for reference in Appendix G: Update Asset Timer BML. The BML is associated with the
Advanced Modify – Before Formula function.

An image of the BML Configuration for the Update Asset Timer is provided below.

Update Asset Timer BML Configuration

Oracle CPQ with Subscription Management Integration Guide 35

CUSTOMER DETAILS

The Customer Details action is used to support account integration. When users click the Customer Details tab on the
Transaction page, a Customer Company Name field is available. By entering a customer company name and clicking
Customer Details, the account fields (Party ID, Account Number, and Bill To Site ID) are populated and mapped to the
associated OSS fields. These field mappings support the creation of a new subscription in OSS based on the information
provided in the Oracle CPQ Transaction.

Customer Details BML

The BML associated with the Customer Details action is included for reference in Appendix H: Customer Details BML. The
BML is associated with the Define Advanced Modify - After Formulas function.

BML Configuration for Customer Details

An image of the BML Configuration is provided below.

Oracle CPQ with Subscription Management Integration Guide 36

OPEN TRANSACTION LINE

The Open Transaction Line action is used to display the details for a specific Transaction Line such as product, charge
information, and charge tiers.

Open Transaction Line BML

The BML for the Open Transaction Line action is associated with the Define Advanced Modify - Before Formulas function. The
BML is included for reference in Appendix I: Open Transaction Line BML.

BML Configuration for Open Transaction Line

An image of the BML Configuration is provided below.

Oracle CPQ with Subscription Management Integration Guide 37

Transaction - SAVE

The Save action saves the current state of the Transaction.

Save BML

The BML for the Save action is associated with the Define Advanced Modify – Before Formulas and Define Advanced Modify -
After Formulas functions. The BML is included for reference in Appendix J: Save BML.

BML Configuration for Save

An image of the BML Configuration for Define Advanced Modify – Before Formulas is provided below.

Save BML Configuration

Oracle CPQ with Subscription Management Integration Guide 38

An image of the BML Configuration for Define Advanced Modify – After Formulas is provided below.

Transaction Line - SAVE

The Save action saves the current state of the Transaction Line.

Save BML

The BML for the Save action is associated with the Define Advanced Modify – Before Formulas and Define Advanced Modify -
After Formulas functions. The BML is included for reference in Appendix J: Save BML.

BML Configuration for Save

An image of the BML Configuration for Define Advanced Modify – After Formulas is provided below.

Oracle CPQ with Subscription Management Integration Guide 39

Oracle CPQ with Subscription Management Integration Guide 40

Library Functions
The installation of the Oracle CPQ Subscription Management package adds several library functions to the Commerce
process. To view the BML associated with these library functions, refer to Appendix L: Library Function BML.

String PostDefaultOnLineItemSM

PostDefaultOnLineItemSM is used for querying and populating charges and discount fields during the creation of a
Transaction Line. PostDefaultOnLineItemSM is called from Advanced Default - After Formulas. The Return Type, input
information, and attributes used by this library function are shown below.

Validation Rules
Validation Rules are used to validate attribute or field values. They are linked to an action and only run when a specific action
is clicked by the user. When the Oracle CPQ Subscription Management package is installed, the Validation Rules in the below
table are added to the Commerce process.

VALIDATION RULE
NAME

LEVEL DESCRIPTION

Change Reason and Code
Population

Transaction Line Validates that the Change Reason and Change Code fields are
populated on the CPQ Transaction page during an Amend
flow.

Empty Billing Frequency Transaction Validates that the Billing Frequency field is not empty.

Hiding Rules
Hiding Rules tell Oracle CPQ to hide select attributes when a pre-defined condition is satisfied. They are made up of a
condition and an action. The values of the attributes selected as the condition attributes determine the result of the condition,
which when True trigger the hiding of the action attributes.

This section identifies the Hiding Rules included in the Oracle CPQ Subscription Management package. The Hiding Rules
apply to the Transaction Line level.

Oracle CPQ with Subscription Management Integration Guide 41

Amend Replacement Visibility

If one or more of the following conditions are satisfied, Amend Replacement is hidden:

 Change Reason is empty or Term Change [ORA_TERM_CHANGE] or Quantity Change or
 Non-Compliant

 Change Code is Empty

 Action code is not ADD[ADD]

Condition Summary

Change Reason Equals "" OR "Term Change [ORA_TERM_CHANGE]" OR "Non-Compliant [ORA_NON_COMPLIANCE]" OR
"Breach [ORA_BREACH]" OR "Quantity Change [ORA_CHANGE_QUANTITY]") OR (Change Code Equals "") OR (Action Code
Not Equals "Add [ADD]"

Usage Value Visibility

Usage Value and Usage Value UoM attributes are hidden if below condition is satisfied:

 Price Type is not empty or Usage [Usage]

Condition Summary

Price Type Not Equals "" OR "Usage [Usage]"

Workflow Steps and Step Transitions
Workflows are made up of steps that define the states of a Transaction and step transitions that designate when the next step
is triggered. The Oracle CPQ package adds a new step and step transition to the Commerce process.

 Subscription Created: A new workflow step added to the Oracle CPQ Ref App by the Oracle CPQ Subscription
Management package. A Timer for creating an asset is configured within this step.

 SubmitOrderToSubscriptionCreated: The action variable name of a new step transition displayed in the Approved
step used to transition the sales user to the Subscription Created step.

SubmitOrderToSubscriptionCreated Step Transition

Oracle CPQ with Subscription Management Integration Guide 42

Timer Configuration
Administrators can schedule Oracle CPQ to automatically perform Commerce actions using Timers set up on Modify type
Commerce actions. Based on a defined duration of time, a Timer triggers when the elapsed time exceeds the specified
duration. Timers are managed within individual workflow steps, and administrators can only associate one Timer with a
workflow step.

When using the Subscription Management solution, the Subscription Created workflow step triggers an Update Asset Timer
when the Max Request Date is the current date. The Timer creates an asset in the asset database one minute after the
Subscription Created step is reached.

The below image shows the Configuration of the Timer. For additional information, refer to Appendix G: Update Asset Timer
BML.

Timer Configuration

Oracle CPQ with Subscription Management Integration Guide 43

ORACLE CPQ ACCOUNT INTEGRATION
This section identifies the library functions that support account integration and the manual changes that administrators must
make to the INT_SYSTEM_DETAILS Data Table and the INT_SYSTEM_TEMPLATES Data Table to support account integration.

Account Integration is not required for customer setup where CPQ is integrated to a CRM system and account information is
imported on a transaction as part of the quote/transaction creation from the CRM.

Note: For more details about Account Integration with Oracle Customer Data Management (CDM), refer to CPQ-CDM
Integration Whitepaper on My Oracle Support under CPQ to Fusion Financials Integration (Doc ID 2012010.1).

Library Functions
The library functions within this section support the CDM integration by retrieving account details.

String getTemplateLocation(String system, String operation)

Queries the template location from the INT_SYSTEM_TEMPLATES Data Table based on the system and operation. This is a
Commerce library function.

The Return Type, input information, and attributes used by this library function are shown below.

String Dictionary getUserAttributes(String system)

This is a Commerce library function that queries the user name and password from the INT_SYSTEM_DETAILS Data Table and
adds it to the payload.

The Return Type, input information, and attributes used by this library function are shown below.

https://support.oracle.com/
https://support.oracle.com/epmos/faces/DocumentDisplay?id=2012010.1

Oracle CPQ with Subscription Management Integration Guide 44

String invokeWebService(String system, String soapReq)

This is a Commerce library function that invokes Web Services and returns the response. The Return Type, input information,
and attributes used by this library function are shown below.

Manual Data Table Changes
The INT_SYSTEM_DETAILS and INT_SYSTEM_TEMPLATES Data Tables are added to the Oracle CPQ Ref App site for account
integration.

INT_SYSTEM_DETAILS

SYSTEM(KEY) USERNAME ENDPOINT DESCRIPTION

TCA-OrgService <Enter the username here to call
the web service endpoint>

<Enter the web service endpoint to
call the service related to TCA>

TCA Find Organization
details

TCA-AccService <Enter the username here to call
the web service endpoint>

<Enter the web service endpoint to
call the service related to TCA>

TCA customer Account
details

Schema

As shown below, administrators must manually make System a primary key by selecting the Key check box.

System Selected as Primary Key

Oracle CPQ with Subscription Management Integration Guide 45

INT_SYSTEM_TEMPLATES

SYSTEM(KEY) OPERATION(KEY) TEMPLATES

TCA-OrgService FindOrg <Enter the template URL path that is uploaded in
File Manager>

TCA-AccService FindAcc <Enter the template URL path that is uploaded in
File Manager>

Schema

As shown below, administrators must manually make System and Operation primary keys by selecting the associated Key
check boxes.

System and Operation Selected as Primary Keys

Add Template Dependencies to File Manager
Oracle CPQ administrators must add the Find Organization payload template file and the Customer Account payload template
file to File Manager. These template files support account integration.

To add the template dependencies to File Manager, perform the following steps:

1. Download the payload template files (i.e. findOrganizationPayload.txt and customerAccountPayload.txt) from My
Oracle Support (Doc ID 2508999.1).

2. Open the Admin Home page.

3. Create a new folder named TCA.

4. Click Browse under Add Files. The Choose File to upload dialog opens.

5. Navigate to the findOrganizationPayload.txt file and click Open.

6. Click Add File. The findOrganizationPayload.txt file displays in File Manager.

7. Complete steps 2-6 for the customerAccountPayload.txt file.

Note: To view the BML included in the payload template files, refer to Appendix K: Payload Template File Content.

https://support.oracle.com/
https://support.oracle.com/
https://support.oracle.com/epmos/faces/DocumentDisplay?id=2508999.1

Oracle CPQ with Subscription Management Integration Guide 46

ORACLE CPQ ACCOUNT LOOKUP INTEGRATION
Beginning in Oracle CPQ 19B, we enhance the Subscription Management solution by including the following functionality:

 Accounts Lookup Library

 Account REST API Services

To enable the Accounts Lookup Library function for Integrations with CRMs, complete the following steps:

1. Navigate to the Admin Home page.

2. Select Commerce Settings under Commerce and Documents. The Commerce Options page displays.

3. Select an Account Lookup BML script from the Accounts Lookup Library Function drop-down.

4. Click Apply.

Note: The Accounts Lookup Library Function drop-down is only available for sites that are integrated with a CRM. Refer
to the Oracle CPQ Administration Online Help for information about the Integration Center.

Administrators need to develop an Account Lookup BML script in order for the lookup feature to know what data to search. A
sample BML script is included within the Subscription Management Installation package. The following examples provide the
input and output BML format for the accounts lookup script.

{
 "fields": ["firstName", "companyName", "customerId"],
 "q": {
 "$and": [{
 "customerId": {
 "$like": "account2%"
 }
 }, {
 "id": {
 "$gte": "21"
 }
 }, {

Oracle CPQ with Subscription Management Integration Guide 47

 "companyName": {
 "$like": "account2%",
 "$options": "I"
 }
 }, {
 "firstName": {
 "$exists": true
 }
 }, {
 "customerRep": {
 "$like": "account2%",
 "$options": "I"
 }
 }, {
 "$or": [{
 "lastName": {
 "$exists": true
 }
 }, {
 "supplierId": {
 "$eq": "123"
 }
 }
]
 }
]
 },
 "offset": 0,
 "limit": 10,
 "orderby": ["firstName:ASC", "companyName:DESC"],
 "version": "v8"
}
Sample Input BML

{
 items: [{
 "firstName": "Fname_OSC_account138",
 "lastName": "Lname_OSC_account138",
 "phone": "Phoneno_account138",
 "companyName": "Company_account138",
 "customerId": "account138",
 "id": 4162404,
 "fax": "Fax_account138",
 "email": "first.last@yourcompany.com",
 "_crm_custom_msm": "value1~value2~value3",
 "_crm_custom_ssm": "value1",
 "customerRep": "CR_account138"]
 }, {
 "firstName": "Fname_OSC_account139",
 "lastName": "Lname_OSC_account139",
 "phone": "Phoneno_account139",
 "companyName": "Company_account139",
 "customerId": "account139",
 "id": 4162408,
 "fax": "Fax_account139",
 "email": "first.last@yourcompany.com",
 "_crm_custom_msm": "value2~value3",
 "_crm_custom_ssm": "value1",

Oracle CPQ with Subscription Management Integration Guide 48

 "customerRep": "CR_account139"
 }
]
 error: {
 system: true
 errorMessage: "tokenized string",
 errorTokenValues: ["a", "b"]
 }
}

Sample Output BML

Note the following eRestLayer Query for reference:

KEY VALUES

fields customerId, firstName, companyName

totalResults true

q {"$and";[{"customerId":{"$like":"account296"}},{"id":{"id:{"$gte
":"21"}},{"c…

Offset 0

Limit 10

Orderby firstName:DESC,companyName

Account REST API Services
Account REST API services are added to support integrating and querying external system accounts. The Accounts REST API
is added to the Integration Catalog. The following services are available:

 Get Account

 Get Accounts

Custom Account Attributes

You may need custom account attributes. By default, all customer account deployed custom account attribute types are
available in the account object except for the following:

 Single Select Menu with the menu value exceeding 30 characters

 Attribute variable names exceeding 116 characters

All custom account attributes are given the accounts object prefix _crm_custom. In the case of native accounts, where CPQ
is the source master, Single Select Menu and Multi-select Menu attributes are not searchable and custom attribute filters are
required.

Oracle CPQ with Subscription Management Integration Guide 49

The table below defines differences between native and integrated Oracle CPQ Subscription Management custom attribute
feature support.

FEATURE NATIVE (CPQ IS MATER SOURCE) INTEGRATED (INTEGRATION IS MASTER
SOURCE)

Complex search with
more than one level

Supported Not Supported

Custom attribute filters Supported Not Supported

Search on Multi-Select
Menu and Single Select
Menu

Not Supported Administrators can extend support in BML

Limit Maximum 1000 characters Maximum 500 characters

hasMore Supported Supported with some restrictions

Translations Not Supported Not Supported

Get Account

URI ENDPOINT SAMPLE

https://site.oracle.com/rest/v13/accounts/100

Oracle CPQ with Subscription Management Integration Guide 50

SAMPLE RESPONSE BODY

{
 "firstName": "Jones Pizza",
 "phone": "2135555555",
 "companyName": "Jones Pizza",
 "customerId": "100",
 "email": "ljones@jonespizza.net",
 "links": [{
 "rel": "self",
 "href": "https://sitename.oracle.com/rest/v13/accounts/100"
 }
]
}

Get Accounts

URI ENDPOINT SAMPLE

https://sitename.oracle.com/rest/v13/accounts

Oracle CPQ with Subscription Management Integration Guide 51

SAMPLE RESPONSE BODY

{{
 "hasMore": false,
 "links": [{
 "rel": "self",
 "href": "https://sitename.oracle.com/rest/v13/accounts"
 }
],
 "items": [{
 "firstName": "Jones Pizza",
 "phone": "2135555555",
 "companyName": " Jones Pizza",
 "customerId": "100",
 "email": "ljones@jonespizza.net",
 "links": [{
 "rel": "self",
 "href": "https://sitename.oracle.com/rest/v13/accounts/100"
 }
]
 }, {
 "firstName": "Smith Trucking",
 "phone": "8475555555",
 "companyName": "Smith Trucking Incorporated",
 "customerId": "102",
 "email": "jsmith@smithtruck.com",
 "links": [{
 "rel": "self",
 "href": "https://sitename.oracle.com/rest/v13/accounts/102"
 }
]
 }, {
 "firstName": "Jackson Rentals",
 "phone": "1235555555",
 "companyName": "Jackson Rentals",
 "customerId": "103",
 "email": "mwjackson@jacksonrental.com",
 "links": [{
 "rel": "self",
 "href": "https://sitename.oracle.com/rest/v13/accounts/103"
 }
]
 }, {
 "firstName": "Morris Foods",
 "phone": "3215555555",
 "companyName": "Morris Foods",
 "customerId": "104",
 "email": "jmorris@morrisfoods.net",
 "links": [{
 "rel": "self",
 "href": "https://sitename.oracle.com/rest/v13/accounts/104"
 }]}]}

Oracle CPQ with Subscription Management Integration Guide 52

Reference Accounts Integration
Reference Accounts Integration, for example OSC Integration, use SOAP API to query. The information to retrieve Reference
Accounts is obtained through the following information process flow:

 End point Information - This is captured using a generic integration.

 CPQ Account Attribute to OSC Account Attribute Mapping - This is captured in a data table named
'Account_attribute'.

 Understand the Search Request – To understanding the search that was requested by the user (i.e., browser, API
client) review a set of BMLs.

 Transform the User Requested Search to the External Search Syntax to Query the External System - CPQ Search
Operator to OSC Search Operator mapping is in a data table named 'Account_Operator'.

 Convert the OSC Accounts Response using an XSL File - This is stored in the file manager under TCA folder
findOrganizationResultTransformation.XSL.

For additional information, refer to Oracle CPQ to Oracle CX Sales Integration Guide, Doc ID 2015009.1 on My Oracle Support.

Account Search Data Tables
This section contains the Account Search mapping details.

ACCOUNT ATTRIBUTE MAPPING

KEY INDEX NAME DESCRIPTION TYPE COMMENTS

Yes Yes cpq_attribute Attribute name of account
object in CPQ

String For example: customerId

Customer attribute example:

_crm_custom_mainContactAddress

No No external_attribute Attribute name of account
object in external system
(integrated partner)

String This can be the attribute name of the top-level
(root) entity for simple mapping, or can be an
attribute of the child entity (first level).

For example:
PartyUsageAssignment.AssignmentC
ode where PartyUsageAssignement is
the child entity and AssignmentCode is the
attribute of the child entity.

Note: If there are two or more records for the
child, they are delimited by a tilda.

You must ensure that there is only one record
in case the cpq_attribute is mapped to is a
not a Multi Select Menu.

No No queryable Flag to indicate whether
the attribute is queryable
(search or sortable)

String Values can be Y for Yes and N for No.

Note: If the external_attribute is
referring to the child-entity's attribute name,
then queryable must be N because you
cannot search and sort on the child entity

No No textual Flag to indicate whether
the attribute is a type
string

String Values can be Y for Yes and N for No.

For OSC Accounts, the PartyID is numeric,
hence the value is set as N.

https://support.oracle.com/epmos/faces/DocumentDisplay?id=2015009.1
https://support.oracle.com/

Oracle CPQ with Subscription Management Integration Guide 53

ACCOUNT OPERATOR MAPPING

KEY INDEX NAME DESCRIPTION TYPE COMMENTS

Yes Yes cpq_operator The operator conforming
to the CPQ Rest Syntax

String For example: $like

No No external_operator The operator conforming
to external system syntax

String For example: STARTSWITH

Notes:

 Only simple search syntax is supported for Accounts data. As such, only one level of query parameters are
supported. Nested query parameters are not supported.

 Search on Multi Select, Single Select menu attributes is not supported. Therefore, the query column in the Data
Table must be set to No.

 The maximum number of items that can be searched in one time is 500. If more than 500 items are requested for
searching, you will not receive an error message but the results will only be returned for the first 500 items.

 The hasMore property is not strictly honored in the Response payload. For example, a response of True is always
returned if the number of rows is the same as the limit specified in the search.

Oracle CPQ with Subscription Management Integration Guide 54

SUBSCRIPTION WORKBENCH
Oracle CPQ 19B and later enhances the Customer Assets List page, now known as the Subscription Workbench, to provide
sales users with a centralized location to easily access subscription information by account ID or account name. In Oracle CPQ
19A or earlier, customer’s leveraging CPQ Subscription Ordering functionality are restricted to a predefined flow for users. To
see the list of assets owned by a given account, a sales user was required to access a Transaction first. This enhancement
decouples the Subscription Workbench page from the Transaction UI and allows users to view the assets/subscriptions
belonging to a given account directly through a navigation link.

To view the Subscription Workbench, a user-defined link must be set up. If the user-defined link is not set up, the Subscription
Workbench is only viewable from the Transaction.

Sample Subscription Workbench

Oracle CPQ with Subscription Management Integration Guide 55

To setup a user-defined Link for accessing the Subscription Workbench, complete the following steps:

1. Navigate to Admin Home page.

2. Click Navigation Menus under Styles and Templates. The Navigation Menus page displays

3. Click List Links for Commerce. The Navigation Items List – Commerce page displays.

4. Select the User Defined tab.

5. Click on Add. The Link Editor page displays.

6. Enter Subscription Workbench for the Label.

7. Enter a valid URL. For example,
/commerce/subscription?process_varname={PROCESS_VARNAME}where process_varname is

the valid Commerce process.

8. Select Link for Show As.

Oracle CPQ with Subscription Management Integration Guide 56

9. Select Label for Display.

10. Click Add. The Navigation Items List - Commerce page displays.

11. Click Customize Menus within the User Defined tab. The Customize Links for Commerce page displays.

12. Select Subscription Workbench from the Hidden Links list and then click Add. The Subscription Workbench link is
moved to under the Top Navigation Tab.

Oracle CPQ with Subscription Management Integration Guide 57

13. (Optional) Click the arrows to move the Subscription Workbench link to the desired location to display on the UI.

14. Click Update to get back to Navigation Items List – Commerce page.

15. Click Back to get to the Navigation Menus page.

16. Click Deploy to deploy the Subscription Workbench to the User-Defined Navigation Menu UI.

Oracle CPQ with Subscription Management Integration Guide 58

To view the Subscription Workbench, complete the following steps:

1. Log in to CPQ, click Subscription Workbench. The Subscription Workbench page displays

Subscription Workbench

2. Perform one of the following steps:

Enter the account name in the Account Name field.
Enter the account ID in the Account Id field.

Click on the Look up Key to select an account.

3. Click Next. The Subscription Workbench showing the list of assets/subscriptions for that account displays.

Oracle CPQ with Subscription Management Integration Guide 59

SUBSCRIPTION PRICING INTEGRATION
OSS generates a billing schedule and bills the subscription in periodic intervals, as configured in the Oracle CPQ Transaction.
When customers opt for usage-based pricing for the subscription, OSS invokes the Oracle CPQ Pricing REST API. The
subscription is price based on its usage/consumption.

Enable Subscription Pricing
To enable Subscription Pricing, perform the following steps in Oracle CPQ:

1. Open the Admin Home page.

2. Select General Site Options under General. The Options – General page opens.

3. Set the Apply only the first matching Pricing profile option to No.

4. Click Update. The Admin Home page opens.

5. Select Commerce Settings under Commerce and Documents. The Commerce Options page opens.

6. Set the Commerce Pricing Behavior option to Version 2.

Note: If Commerce Pricing Behavior is not displayed as a Commerce Setting, edit the BM Context to remove the
disabled_pricing_behavior. The disabled_pricing_behavior must be blank in the BM Context to display in
the Commerce Settings drop-down.

7. Click Update.

Charges
The following three charges are supported by the Subscription Management solution:

 One Time Fee (e.g. Activation Fee)

 Recurring Fee (e.g. Monthly Fee)

 Usage Fee (e.g. Consumption Fee)

Notes:

 Pricing for One Time charges and Recurring changes is calculated as unit price x quantity.

 User BOM rules to model the charge structure for products in the Subscription Management solution.

 For the Subscription Management solution to work, product items must be added as parts under the Model.

 Two kinds of pricing are supported for Recurring Usage Fee charges: Non Tier Pricing and Tier Pricing.

Discounts
Sales users can apply auto discounts and can override discounts on One Time, Recurring, and Usage Fee charges.

 Discounts are queried from the data table and populated in Transaction Line.

 These auto-populated discounts can be overridden by sales user.

 These discounts are sent to OSS upon clicking Submit Order.

Oracle CPQ with Subscription Management Integration Guide 60

Pricing Engine Setup
The following Subscription Pricing-related configuration is deployed by default with the CPQ Subscription Management
package. Pricing Definitions are stored in the following data tables.

ORCL_PRC_BASE_CHGS

This data table stores the charge-related information. The price definition of each products needs to be added to this table.

 Charge_Id: Unique Id for the charge

 Product: Product name

 AsOfDate: The date the information provided is valid from.

 Block_Size: Block size for the charge

 Price: Price for the charge

 Allowance: Allowance for the charge

 Charge_Type: Type of the charge (One Time, Recurring, or Usage)

 Periodicity: Periodicity determines the frequency at which billing invoice is available for each product.

 Tiered: Recurring Usage Charge can be Tiered or Non Tiered (Y or N)

 TierType: If the Recurring Usage Charge is designated as Tiered, it can be set as ORA_ALL_TIERS or
ORA_HIGHEST_TIER. By default ORA_ALL_TIERS is supported for the pricing profile. The default can be modified to
ORA_HIGHEST_TIER pricing profile.

ORCL_PRC_BASE_TIERS

This data table stores the tier information for the parts which have tiered price set in the price definition. Tier information is
only used when Recurring Usage Charge is set as Tiered in the pricing profile.

 Charge_Id: Charge_Id of the charge for which tiers are configuring

 Tier_Min: Tier Staring range

 Tier_Max: Tier Ending range

 Block_Size: Block Size for the corresponding Tier

 Price: Price for the corresponding Tier

ORCL_PRC_DISCOUNTS

This data table stores the discount data for each part. Discounts that are defined as part of the price definition are added to
this data table.

 Product: Product Name of the charge

 Discount_Name: Name of the adjustment

 Discount_Type: Type of the adjustment. Supported values are: Percent Off, Amount Off, and Price Override

 Discount_Value: Actual value to be adjusted

 Discount_Effectivity: Effectivity of discounts. Supported value is ORA_ALL_TERM.

 Effectivity_Periods: This column can be used if ORA_PERIODS_FROM_START_DT or ORA_PERIODS_BEFORE_END_DT
discount effectivity has to be used.

 Start_Date: Discount is applicable to product if contract start date is same or after date mentioned in this column

 End_Date: Discount is applicable to product if contract start date is same or before date mentioned in this column

 Discount_Reason: Reason to apply discount

 Discount_Desc: Description about the discount

Oracle CPQ with Subscription Management Integration Guide 61

ORCL_PRC_LOOKUP

This data table stores the CPQ and OSS lookups for periodicity and charge type.

 Type: Lookup type. Periodicity and ChargeType

 CPQ_Code: CPQ code for periodicity and charge type

 OSS_Code: OSS code for periodicity and charge type

Note: This table can be used if lookups for any other type has to be introduced. For demo setup this table is configured
with periodicity and charge type.

PRICING PROFILE CONFIGURATION FOR DEMO DATA

Profile Name: Subscription Charges. The Subscription Charges pricing profile filters the list of products by pricing profile
action. By default, the profile action executes for Crossover Outright Buy, Crossover SUV Subscription, Sports SUV
Subscription, Luxury SUB Subscription, Standard Maintenance Plan, Premium Maintenance Plan, Sirius XM Radio, WiFi
Service, and SUB Charging Station use.

Below simple condition is used to filter out parts for pricing engine:

Product Type = subscription

Prices of all the parts, whose value for “Product Type” field is set to “subscription”, will be decided by pricing engine.

Profile BML: Profile Action is associated to Advanced BML. This BML is associated to the profile action and contains the logic
for price calculation. Administrators can customize the BML logic to change the pricing logic.

Profile BML invokes the oRCL_pRC_oraclePricingSubscriptionBaseProfile utility BML. This returns JSON calculation
information that provides all the charge information.

PRICING RELATED UTILITY BMLS

The following are the Utility BMLs used by Subscription Pricing. The BML source code is available in Appendix M: Subscription
Pricing Utility BMLs.

oRCL_pRC_oraclePricingSubscriptionBaseProfile BML

This utility is associated to the pricing profile and internally calls the following utility BMLs:

 Calculate List Price: Calculates the List Price

 Prepare Tier Info JSON: Prepares the Tier JSON information

 Get Lookups: Provides OSS lookups for periodicity and charge types.

Oracle CPQ with Subscription Management Integration Guide 62

Utility BML

There are two utility BMLs which populate calculated pricing information for arrays. These BMLs are invoked from the
Transaction Line Advanced Default - After Formulas.

 Populate Charges: Populates the charge information for the product

 Populate Tiers: Populates the tier information for tier arrays

Oracle CPQ with Subscription Management Integration Guide 63

APPENDIX A: CREATE SUBSCRIPTION WORKFLOW
OIC is the middleware used to establish an integration between Oracle CPQ and OSS. Once this integration is established, sales
users can use Oracle CPQ to create a Transaction and invoke OIC to create a subscription in OSS. To access Oracle CPQ to
create a Transaction, sales users directly log in Oracle CPQ or gain access through a Customer Relationship Management
(CRM) opportunity.

To create a subscription, perform the following steps in Oracle CPQ:

1. Navigate to Transaction Manager.

2. Click New Transaction. The Transaction page opens.

3. Select the date the subscription is to take effect from the Default Request Date field, which is used to specify the
date when the subscription order should be activated. After approval of the Transaction, the Submit Order button is
available on the Transaction page.

Submit Order Button

Notes:

 When the Subscription Management package is installed, a Subscription Status field and a Subscription Id field are
added. Administrators can add these fields to the layout.

 OSS requires the generation of a billing schedule as part of subscription creation. If billing or charge-related fields
are missing or incorrect in the Create subscription payload, the billing schedule is typically not generated.
Administrators can resolve this discrepancy by attempting to activate the subscription in OSS.

4. Click Submit Order. Once the subscription is created, the Subscription Id is updated.

a. If subscription activation is successful, the Subscription Status field updates to "Success".

b. If the billing schedule is not generated, a new Subscription id is created, but the Subscription Status field updates
to "Failure".

Oracle CPQ with Subscription Management Integration Guide 64

5. When the subscription reaches the Subscription Created state, the Update Asset Timer is triggered. Refreshing the
Transaction changes the Fulfillment Status from Created to Fulfilled.

Fulfillment Status – Fulfilled

Notes:

 The Update Asset Timer is configured in the Subscription Created step and monitors the Max Request Date field.
The Max Request Date field, which is part of the Subscription Management Installation Package, defaults to the
Default Request Date during the creation of a Transaction.

 The Update Asset Timer create assets only when the Contract Start Date is less than or equal to the Max Request
Date. After the Update Asset Timer is executed, the Max Request Date field is updated to the next Contract Start
Date. The Update Asset Timer will then execute on this date. CPQ Commerce Timer functionality is leveraged to
activate the asset as specified on the request date. For details about Timer functionality, refer to the Oracle CPQ
Administration Online Help.

Oracle CPQ with Subscription Management Integration Guide 65

APPENDIX B: AMEND SUBSCRIPTION WORKFLOW
The Subscription Management solution uses Subscription Ordering functionality to support the modification of an existing
asset-based subscription. After a subscription is created and fulfilled, sales users can use the Subscription Ordering Modify
flow to change the subscription product, quantity, or duration.

To amend a subscription, perform the following steps in Oracle CPQ:

1. Navigate to Transaction Manager.

2. Click the Transaction Number associated with the asset to amend. The Transaction page opens.

3. Click the Customer Assets button. The Customer Assets page opens.

4. Select the asset to modify. Sales users must know the asset key associated with the asset-based subscription to
modify.

Customer Assets

5. Click Modify. The Model Configuration page opens.

Model Configuration Page

6. Modify the subscription service, quantity, or duration.

Oracle CPQ with Subscription Management Integration Guide 66

7. Click Update.

Model Configuration Page

8. Click Create Transaction. The Transaction page opens.

9. (Optional) Click Add Line Item to add one or more additional products.

Click Update.
Click Add to Transaction.

The modified subscription details are shown on the Transaction page.

10. Select the date the amended subscription is to take effect from the Default Request Date field.

11. Select a Change Reason. Select the appropriate Change Reason based on your business need from the following:
Non-Compliant, Breach, Quantity Change, Downgrade, Term Change, and Upgrade.

If the Change Reason is Upgrade or Downgrade, the Amend Replacement field must be the instance Id of the deleted
product.

Transaction Page – Change Reason and Change Code Fields

Note: The amendment process requires CPQ to send fields like Change Reason, Change Code, Amendment
Replacement, Instance ID, etc. to OSS. Administrators can write Commerce rules to set the values for these fields as part
of the amendment flow call to OSS.

12. Select a Change Code. Select the appropriate Change Code based on your business need from one of the following
options: Full, Prorate without Credit, and Prorate with Credit.

13. Use the UpdateOldSubscription menu to determine whether to apply the subscription amendments to a new
subscription or to the existing subscription. In the following example, the amendments to the subscriptions are
applied to a new subscription.

• When the UpdateOldSubscription menu is set to False, the amended product lines are added to a new
subscription in OSS.

• When the UpdateOldSubscription menu is set to True, the amended product lines are added the existing
subscription in OSS.

Oracle CPQ with Subscription Management Integration Guide 67

14. Submit the transaction to get the required approvals and create the amendment order.

Notes:

 When a subscription is amended, the status of both the original subscription and the amended subscription is
"Active" in OSS.

 Quality changes are supported at the subscription line level and not at the root model level.

 Sales users cannot amend a subscription with a future-dated termination date. The termination of a subscription is
handled by OSS.

 Sales user can use the Update flag with all types of Amend flows to determine whether to apply subscription
changes to a new subscription or the existing subscription.

Oracle CPQ with Subscription Management Integration Guide 68

APPENDIX C: ADD AMENDED LINES TO EXISTING SUBSCRIPTION
Once a subscription is created, sales users can change the subscription and have the amended lines included in the existing
subscription. As an example, a sales user subscribes to "Crossover SUV Subscription" in Oracle CPQ and later decides to
upgrade to "Sports SUV Subscription". The sales user wants to include the amended lines in the existing subscription instead
of creating a new subscription.

To add amended lines to an existing subscription, perform the following steps:

1. Open Oracle CPQ.

2. Navigate to Transaction Manager.

3. Click the Transaction Number associated with the subscription to amend. The Transaction page opens.

4. Amend the subscription by adding, updating, or deleting products.

5. Set the UpdateOldSubscription checkbox next to the amended products to True. The amended product lines are
added to the existing subscription in OSS.

Subscription Changes Applied to Existing Subscription

Notes:

 Administrators can also automate the process by setting the "Update" flag through the BOM configuration
approach.

 The Populate OSS Charge action allows users to call OSS to get the update the charges for the pre-existing
subscription lines from the original subscription contract that are getting amended in the current Transaction.

Oracle CPQ with Subscription Management Integration Guide 69

APPENDIX D: RENEW SUBSCRIPTION WORKFLOW
OSS provides the ability to set the renewal for subscriptions that are managed with Oracle CPQ. When the OSS Renew event is
triggered, a new Transaction is created in CPQ with an action code of Renew for all the Transaction Lines. Upon clicking the
Submit Order button, a new subscription is created in OSS.

Note: If administrators define email notifications for renewals, the subscription owner receives an email notification
informing of the subscription renewal.

To renew an active subscription directly from Oracle CPQ, perform the following steps:

1. In Oracle CPQ, create a new Transaction with the customer information updated.

2. Navigate to the Customer Assets page.

3. Select the asset that corresponds to the subscription to renew.

Customer Assets Page

4. Click Renew. The Transaction page opens.

5. Click Save.

6. Click Submit Order.
Use OSS to verify the renewal of the subscription.
The product status of the subscription displays as "renewed" in OSS.

Oracle CPQ with Subscription Management Integration Guide 70

APPENDIX E: TERMINATE SUBSCRIPTION WORKFLOW
Sales users can use the Customer Assets page to terminate subscriptions that are in an active state in OSS. Terminating an
active subscription creates a Transaction Line in a new Transaction, where the root line item has an action code of Terminate
and all products have an action code of Delete.

To terminate an active subscription, perform the following steps:

1. In Oracle CPQ, create a new Transaction with the customer information updated.

2. Navigate to the Customer Assets page.

3. Select the asset that corresponds to the subscription to terminate.

Customer Assets Page

4. Click Terminate. The Transaction page opens.

5. Click Save.

6. Click Submit Order.
Use OSS to verify the termination of the subscription.
The product status of the subscription displays as "closed" in OSS.

Oracle CPQ with Subscription Management Integration Guide 71

APPENDIX F: COMMERCE ATTRIBUTES
The following table identifies new and existing Commerce attributes used by the Subscription Management solution. The attributes identified in the Description column
as “existing” are already available in the Oracle Quote to Order Commerce process.

DOCUMENT ATTRIBUTE NAME ATTRIBUTE VARIABLE NAME TYPE DESCRIPTION

Transaction SubscriptionEndDate subscriptionEndDate_t Date This field is added to capture the subscription End date.
The subscription Start date is mapped to the Subscription
Ordering defaultRequestDate field.

Transaction maxRequestDate maxRequestDate_t Text A Timer is configured based on this field, which initially
copies the content of defaultRequestDate field and is
updated based on the Contract.

Transaction Status status_t Menu This is an existing menu used to store the state of a
Transaction. A new menu item, Subscription Created
(SUBSCIPTION_CRATED) is added.

Transaction Transaction Number transactionID_t Text This is an existing field that is mapped to an OSS
subscription number. The subscription number must be
unique. The transaction number is appended with
transaction Id.

Transaction SubscriptionId subscriptionId_t Text This field is added for debugging purposes. When
subscriptions are successfully created, the field is updated
with the new subscription ID.

Transaction Subscription Status subscription_Status_t Text

Oracle CPQ with Subscription Management Integration Guide 72

DOCUMENT ATTRIBUTE NAME ATTRIBUTE VARIABLE NAME TYPE DESCRIPTION

Transaction RenewDraftSubscriptionNumb
er

renewDraftSubscriptionNumber_t Text This field is added for the Renew flow. In the last step of
the Renew flow, the temporary subscription created by
the OSS Renew event is deleted. The subscription number
of the temporary subscription is stored in this variable, so
the REST API call from OIC can delete the temporary
subscription.

Transaction SubscriptionProfileId subscriptionProfileId_t Holds the OSS subscription Profile Id used when a
subscription is created by CPQ Cloud. The value is
obtained from OSS.

Transaction BuId businessUnitId_t Text Fusion applications identify each customer using a BuId.
The value is obtained from OSS.

Transaction OSS Price Info ossPriceInfo_t Text Holds the pricing charges coming from OSS for all the
subscription items.

Transaction-
>Customer
Detail

Billing Frequency oRCL_billingFrequency_t Menu Determines the billing frequency for a subscription. The
billing frequency option can be obtained using the
following REST API call: https://fuscdrmsmc225-fa-
ext.us.oracle.com/crmRestApi/resources/late

st/timeCodeUnits. Conversion rate multiplied by
BaseUOMCode provides UserUOMCode.

Transaction-
>Customer
Detail

Customer Company Name CustomerCompanyName_t Text When the Customer Company Name field is populated,
Customer Details, partyId, accountId, and BillToSiteUseId
are populated for the entered company.

Transaction-
>Customer
Detail

Account Number accountNumber_t Text When the Customer Detail button on the Customer Detail
tab is clicked, the customer account number is retrieved
based on the entered customer company name.

Oracle CPQ with Subscription Management Integration Guide 73

DOCUMENT ATTRIBUTE NAME ATTRIBUTE VARIABLE NAME TYPE DESCRIPTION

Transaction-
>Customer
Detail

Bill To Site Use Id billToSiteUseId_t Text When the Customer Detail button on the Customer Detail
tab is clicked, the Bill To Site Use Id is retrieved based on
the entered customer company name.

Transaction
Line Attribute

Party Id partyId_t Text The CDM integration provides the value for this field
based on the Customer Company Name

Transaction
Line Attribute

Contract Start Date contractStartdate_l Date This is an existing Line Item Grid attribute in the Ref App,
modified to have a default current date.

Transaction
Line Attribute

Quantity requestedQuantity_l Integer This is an existing field modified to make the field read-
only for parts and marking lines (Product and Charge) as
mandatory in the BOM definition

Transaction
Line Attribute

Change Reason changeReason_l Menu A single select menu to handle all the possible reasons for
closing a subscription. Possible values (variable names in
parentheses):

• Breach (ORA_BREACH)
• Non Compliant (ORA_NON_COMPLIANCE)
• Quantity Change (ORA_CHANGE_QUANTITY)
• Downgrade (ORA_DOWNGRADE)
• Term Change (ORA_TERM_CHANGE)
• Upgrade (ORA_UPGRADE)

Transaction
Line Attribute

Change Code changeCode_l Menu A single select menu to handle all the possible codes to
close a subscription. Possible values (variable names in
parentheses):

• Full (ORA_FULL)
• Prorate Without Credit

(ORA_PRORATE_WITHOUT_CREDIT)
• Prorate With Credit (ORA_PRORATE_WITH_CREDIT)

Oracle CPQ with Subscription Management Integration Guide 74

DOCUMENT ATTRIBUTE NAME ATTRIBUTE VARIABLE NAME TYPE DESCRIPTION

Transaction
Line Attribute

Amend Replacement amendReplacement_l Text This field is used to capture the instance Id for the
product getting replaced. This value is used for
constructing a relationship in OIC.

Transaction
Line Attribute

Tier Sequence oRCL_pRC_tierInfo.oRCL_pRC_tierSeque
nce

Integer Used to capture the sequence of the tier with up to a
maximum of three tiers. When the tier is single, this holds
the single tier.

Transaction
Line Attribute

Tier From oRCL_pRC_tierInfo.oRCL_pRC_tierFrom Integer The starting count of tier 1.

Transaction
Line Attribute

Tier To oRCL_pRC_tierInfo.oRCL_pRC_tierTo Integer The ending count of tier 1.

Transaction
Line Attribute

Tier List Price oRCL_pRC_tierInfo.oRCL_pRC_tierListPri
ce

Currency The list price for the tier.

Transaction
Line Attribute

Tier Price Format oRCL_pRC_tierInfo.oRCL_pRC_tierPriceF
ormat

Menu The menu for selecting the price format for the tier. Value
sets include:

• Per Unit(ORA_PER_UNIT)
• Per Block(ORA_PER_BLOCK)

Transaction
Line Attribute

Tier Block Size 1 oRCL_pRC_tierInfo.oRCL_pRC_tierBlockS
ize

Integer The block size for tier 1.

Transaction
Line Attribute

Amended Replacement
Product

amendReplacementProduct HTML Displays the list of products that are getting replaced as
part of an upgrade or downgrade.

Transaction
Line Attribute

Period From oRCL_cHG_periodFrom_l Integer Used when Adjustment Effectivity is
ORA_SPECIFIC_PERIODS

Transaction
Line Attribute

Period To oRCL_cHG_periodTo_l Integer Used when Adjustment Effectivity is
ORA_SPECIFIC_PERIODS

Oracle CPQ with Subscription Management Integration Guide 75

DOCUMENT ATTRIBUTE NAME ATTRIBUTE VARIABLE NAME TYPE DESCRIPTION

Transaction
Line Attribute

Contract End Date contractEndDate_l Date The date the customer stops receiving the service.

Transaction
Line Attribute

External Parent Key oRCL_pRC_externalParentKey Text

Transaction
Line Attribute

PriceFormat oRCL_cHG_priceFormat_l Menu Values set as follows:

• PER UNIT (ORA_PER_UNIT)
• PER BLOCK (ORA_PER_BLOCK)

Transaction
Line Attribute

Discount Effectivity Type discountEffectivityType_l Menu This field holds information about when to apply the
adjustment.

• All Term (ORA_ALL_TERM)

Transaction
Line Attribute

Usage Value usageValue_l Float This attribute acts as a quantity for parts of type Usage.

Transaction
Line Attribute

Usage Value UoM usageValueUOM_l Text Unit of measure for Usage Value.

Oracle CPQ with Subscription Management Integration Guide 76

APPENDIX G: UPDATE ASSET TIMER BML
The Subscription Created workflow step triggers an Update Asset Timer when the Max Request Date is reached. The BML for
the Update Asset Timer is used to convert an asset and all of its Transaction Lines, or the selected Transaction Lines, to an
updated asset.

//MainDoc UpdateAsset Action Script
//
//Purpose: Helper to create asset for all or selected lines in the transaction or specified
external lines
//System Variables : _system_buyside_id
//Main doc fields: _transaction_customer_id(_transaction prefix is from maindoc varname) //
(process specific): currency_t, paymentTerms_t
//Line fields:_document_number, requestDate_l, itemInstanceId_l, //oRCL_ABO_ActionCode_l,
_line_bom_parent_id, fulfillmentStatus_l

//step1 common transaction heading initialization customer_id = _transaction_customer_id;
currency = currency_t; paymentTerm = paymentTerms_t;

//abo main logic
FULFILLED = "FULFILLED";
DOCUMENT_NUMBER = "documentNumber";
CUSTOMER = "customer";
TRANSACTION_ID = "transactionId";
CURRENCY_CODE = "currency";
REQUEST_DATE = "requestDate";
ACTION_CODE = "actionCode";
ITEM_INSTANCE_ID = "itemInstanceId";
PAYMENT_TERM = "paymentTerms";
//we won't allow asset creation until you select a customer.
if(customer_id == "" OR isnull(customer_id)){ throwError("Please select an customer.");
}
// since some transaction attribute value are needed to update asset
// we will also collect some transaction info and for internal , we will place them into 2
level hierarchy json txn_json = json(); jsonput(txn_json, CUSTOMER, customer_id);
jsonput(txn_json, CURRENCY_CODE, currency); jsonput(txn_json, PAYMENT_TERM, paymentTerm);
jsonput(txn_json, TRANSACTION_ID, _system_buyside_id);

//processing for internal case.
//now we collect the list of lines need to update-asset
currentDateFmt=strtojavadate(getstrdate(),"MM/dd/yyyy"); successString =""; lineJsonArray =
jsonArray(); for line in transactionLine{ if(line.fulfillmentStatus_l == "FULFILLED" OR
line.fulfillmentStatus_l == "CANCELLED"){ continue;//skip lines already fulfilled or
cancelled.
 } if(line._line_bom_parent_id <>"") { //skip non-root line continue;
 } if(line.itemInstanceId_l=="") { //skip non abo & non model line

 continue;
 } contractStartDatFmt=strtojavadate(line.contractStartDate_l,"MM/dd/yyyy");
 if (comparedates(contractStartDatFmt,currentDateFmt)==1) { continue;
 } lineJson = json();
 jsonput(lineJson, DOCUMENT_NUMBER, line._document_number);
 //for transaction date we will use db format within abo script, // also for empty date
we treat as today as of processing time transactionDate = line.requestDate_l;
if(transactionDate == "" OR isnull(transactionDate)){ transactionDate =
datetostr(getDate(false), "yyyy-MM-dd HH:mm:ss");
 }else{ tranDate = strtojavadate(transactionDate, "MM/dd/yyyy HH:mm:ss");
transactionDate = datetostr(tranDate, "yyyy-MM-dd HH:mm:ss");

Oracle CPQ with Subscription Management Integration Guide 77

 } jsonput(lineJson, REQUEST_DATE, transactionDate); jsonput(lineJson, ACTION_CODE,
line.oRCL_ABO_ActionCode_l); jsonput(lineJson, ITEM_INSTANCE_ID, line.itemInstanceId_l);
jsonarrayappend(linejsonArray, lineJson);

 //also prepare the return string to update root lines when the updateAsset is successful
if (successString<> ""){ successString = successString + "|";
 } successString = successString + line._document_number +
"~fulfillmentStatus_l~"+FULFILLED; }

//now inovke utility to load line detail,transfer to bom, and aggregate open order, and
generate delta action and invoke asset syc
//if updateAsset fail, expect the abo_updateAsset to throwerror from inside response =
util._ORCL_ABO.abo_updateAsset(txn_json, lineJsonArray); if (successString<> ""){
successString = successString + "|";
}
 return successString;
//MainDoc UpdateAsset Action Script
//
//Purpose: Helper to create asset for all or selected lines in the transaction or specified
external lines
//System Variables : _system_buyside_id
//Main doc fields: _transaction_customer_id(_transaction prefix is from maindco varname) //
(process specific): currency_t, paymentTerms_t
//Line fields:_document_number, requestDate_l, itemInstanceId_l, //oRCL_ABO_ActionCode_l,
_line_bom_parent_id, fulfillmentStatus_l

//step1 common transaction heading initialization customer_id = _transaction_customer_id;
currency = currency_t; paymentTerm = paymentTerms_t;

//abo main logic
FULFILLED = "FULFILLED";
DOCUMENT_NUMBER = "documentNumber";
CUSTOMER = "customer";
TRANSACTION_ID = "transactionId";
CURRENCY_CODE = "currency";
REQUEST_DATE = "requestDate";
ACTION_CODE = "actionCode";
ITEM_INSTANCE_ID = "itemInstanceId";
PAYMENT_TERM = "paymentTerms";
//we won't allow asset creation until you select a customer.
if(customer_id == "" OR isnull(customer_id)){ throwError("Please select a customer."); }
// since some transaction attribute value are needed to update asset
// we will also collect some transaction info and for internal , we will place them into 2
level hierarchy json txn_json = json(); jsonput(txn_json, CUSTOMER, customer_id);
jsonput(txn_json, CURRENCY_CODE, currency); jsonput(txn_json, PAYMENT_TERM, paymentTerm);
jsonput(txn_json, TRANSACTION_ID, _system_buyside_id);

//processing for internal case.
//now we collect the list of lines need to update-asset
currentDateFmt=strtojavadate(getstrdate(),"MM/dd/yyyy"); successString =""; lineJsonArray =
jsonArray(); for line in transactionLine{ if(line.fulfillmentStatus_l == "FULFILLED" OR
line.fulfillmentStatus_l == "CANCELLED"){ continue;//skip lines already fulfilled or
cancelled.
 } if(line._line_bom_parent_id <>"") { //skip non-root line continue;
 } if(line.itemInstanceId_l=="") { //skip non abo & non model line continue;
 } contractStartDatFmt=strtojavadate(line.contractStartDate_l,"MM/dd/yyyy");
 if (comparedates(contractStartDatFmt,currentDateFmt)==1) { continue;
 } lineJson = json();

Oracle CPQ with Subscription Management Integration Guide 78

 jsonput(lineJson, DOCUMENT_NUMBER, line._document_number);
 //for transaction date we will use db format within abo script, // also for empty date
we treat as today as of processing time transactionDate = line.requestDate_l;
if(transactionDate == "" OR isnull(transactionDate)){ transactionDate =
datetostr(getDate(false), "yyyy-MM-dd HH:mm:ss");
 }else{ tranDate = strtojavadate(transactionDate, "MM/dd/yyyy HH:mm:ss");
transactionDate = datetostr(tranDate, "yyyy-MM-dd HH:mm:ss"); }
 jsonput(lineJson, REQUEST_DATE, transactionDate); jsonput(lineJson, ACTION_CODE,
line.oRCL_ABO_ActionCode_l); jsonput(lineJson, ITEM_INSTANCE_ID, line.itemInstanceId_l);
jsonarrayappend(linejsonArray, lineJson);

 //also prepare the return string to update root lines when the updateAsset is successful
if (successString<> ""){ successString = successString + "|";
 } successString = successString + line._document_number +
"~fulfillmentStatus_l~"+FULFILLED; }

//now inovke utility to load line detail,transfer to bom, and aggregate open order, and
generate delta action and invoke asset sync
//if updateAsset fail, expect the abo_updateAsset to throwerror from inside response =
util._ORCL_ABO.abo_updateAsset(txn_json, lineJsonArray); if (successString<> ""){
successString = successString + "|";
}
 return successString;

Oracle CPQ with Subscription Management Integration Guide 79

APPENDIX H: CUSTOMER DETAILS BML
The BML for the Customer Details action is used to support account integration. When sales users enter a customer company
name and click Customer Details, the BML retrieves the PrimaryPartyId, BillToAccountId, and BillToSiteUseId fields from the
Oracle EBS Customer Data Management application.

//1. Get Template Location system="TCA-OrgService"; operation="FindOrg";
 organizationSoapRequestLocation = commerce.getTemplateLocation(system, operation);
//payload = commerce.getUserAttributes(system); defaultErrorMessage = "";
organizationSoapRequest=applytemplate(organizationSoapRequestLocation ,dict("string"),
defaultErrorMessage);
 organizationSoapResponse = commerce.invokeWebService(system, organizationSoapRequest);
 errorString = "Error in TCA Service"; xpaths = string[1]; xpaths[0] = "//ns2:PartyId";
returnPartyId = ""; output = readxmlsingle(organizationSoapResponse, xpaths); if
(containskey(output,xpaths[0])) { returnPartyId = get(output,xpaths[0]); } else
{ returnPartyId = "Check if customer company name is valid & also TCA
service is up."; returnSiteNumber = "Check if customer company name is valid & also
TCA service is up" ; return
"1~partyId_t~"+returnPartyId+"|"+"1~billToSiteUseId_t~"+returnSiteNumber+"|"; }

 // Get Template Location system="TCA-AccService"; operation="FindAcc";
 customerAccountSoapRequestLocation = commerce.getTemplateLocation(system, operation);
//payload1 = commerce.getUserAttributes(system,returnPartyId); payload1 = dict("string");
put(payload1,"returnPartyId",returnPartyId);
customerAccountSoapRequest=applytemplate(customerAccountSoapRequestLocation,payload1,
defaultErrorMessage);
//print customerAccountSoapRequest;
 customerAccountsoapResponse = commerce.invokeWebService("TCA-AccService",
customerAccountSoapRequest);
//print customerAccountsoapResponse ;
 xpathsAcct = string[1]; xpathsAcct[0] = "//ns2:CustomerAccountId"; returnAccountNumber =
"" ; outputAcct = readxmlsingle(customerAccountsoapResponse, xpathsAcct); if
(containskey(outputAcct,xpathsAcct[0]))
 { returnAccountNumber = get(outputAcct,xpathsAcct[0]); } else {
 returnAccountNumber = "Check if customer company name is valid & also
TCA service is up"; returnSiteNumber = "Check if customer company name is valid & also
TCA service is up "; return
"1~accountNumber_t~"+returnAccountNumber+"|"+"1~billToSiteUseId_t~"+returnSiteNumber
+"|"; } returnBillToSiteUseId=""; xpathsbilltositeuseid = string[1];
xpathsbilltositeuseid[0] =
"//ns2:Value/ns2:CustomerAccountSite/ns2:CustomerAccountSiteUse[ns2:SiteUseCode='BILL_TO'
and ns2:PrimaryFlag='true']/ns2:SiteUseId"; outputbilltositeuseid =
readxmlsingle(customerAccountsoapResponse, xpathsbilltositeuseid); if
(containskey(outputbilltositeuseid ,xpathsbilltositeuseid[0])) {
returnBillToSiteUseId= get(outputbilltositeuseid,xpathsbilltositeuseid[0]); } else {
returnBillToSiteUseId= "Check if customer company name is valid & also TCA service is up.
";

} xpathCustomerAccountSiteUse = string[1];
// get the XML Element called Customer AccountSiteUse where primary is true and use is BILL
TO xpathCustomerAccountSiteUse[0] =
"//ns2:Value/ns2:CustomerAccountSite/ns2:CustomerAccountSiteUse[ns2:SiteUseCode='BILL_TO'
and ns2:PrimaryFlag='true']";
 outputCustomerAccountSiteUse = readxmlsingle(customerAccountsoapResponse,
xpathCustomerAccountSiteUse); returnSiteId =""; if
(containsKey(outputCustomerAccountSiteUse,xpathCustomerAccountSiteUse[0])) {
 CustomerAccountSiteUseXmlFragment =
get(outputCustomerAccountSiteUse,xpathCustomerAccountSiteUse[0]); xpath1 = string[1];
xpath1[0] = "//ns2:CustomerAccountSiteId"; output1 =
readxmlsingle(CustomerAccountSiteUseXmlFragment,xpath1); if
(containsKey(output1,xpath1[0]))

Oracle CPQ with Subscription Management Integration Guide 80

 { returnSiteId = get(output1,xpath1[0]);
 }
 } if (returnSiteId == "") { returnSiteId = errorString;
 } partySiteId = ""; xpathCustomerAccountSite = string[1];
// get the XML Element called Customer AccountSite where ID = returnSiteId
xpathCustomerAccountSite[0] =
"//ns2:Value/ns2:CustomerAccountSite[ns2:CustomerAccountSiteId=" + returnSiteId + "]";

 outputCustomerAccountSite = readxmlsingle(customerAccountsoapResponse,
xpathCustomerAccountSite);
 if (containsKey(outputCustomerAccountSite,xpathCustomerAccountSite[0]))
 {
 CustomerAccountSiteXmlFragment =
get(outputCustomerAccountSite,xpathCustomerAccountSite[0]);
 xpath2 = string[1]; xpath2[0] = "//ns2:PartySiteId"; output2 =
readxmlsingle(CustomerAccountSiteXmlFragment,xpath2); if
(containsKey(output2,xpath2[0]))
 { partySiteId = get(output2,xpath2[0]);
 } if (partySiteId == "") { partySiteId = errorString;
 }
 } partySiteNumber = ""; xpathPartySiteNumber = string[1];
// get the XML Element called Customer AccountSite where ID = returnSiteId
xpathPartySiteNumber[0] = "//ns2:Value/ns2:PartySite[ns1:PartySiteId=" + partySiteId + "]";
 outputPartySiteNumber = readxmlsingle(organizationSoapResponse, xpathPartySiteNumber);
 if (containsKey(outputPartySiteNumber,xpathPartySiteNumber[0])) {
 PartySiteNumberXmlFragment = get(outputPartySiteNumber,xpathPartySiteNumber[0]);
 xpath3 = string[1]; xpath3[0] = "//ns1:PartySiteNumber"; output3 =
readxmlsingle(PartySiteNumberXmlFragment,xpath3); if (containsKey(output3,xpath3[0]))
 { partySiteNumber = get(output3,xpath3[0]);
 }
 } return
"1~partyId_t~"+returnPartyId+"|"+"1~accountNumber_t~"+returnAccountNumber+"|"+"1~billToSite
UseId_t~"
+returnBillToSiteUseId +"|"+"1~customerID_t~"+returnPartyId
+"|"+"1~_customer_id~"+returnPartyId+"|";
 outputCustomerAccountSite = readxmlsingle(customerAccountsoapResponse,
xpathCustomerAccountSite);
 if (containsKey(outputCustomerAccountSite,xpathCustomerAccountSite[0]))
 {
 CustomerAccountSiteXmlFragment =
get(outputCustomerAccountSite,xpathCustomerAccountSite[0]);
 xpath2 = string[1]; xpath2[0] = "//ns2:PartySiteId"; output2 =
readxmlsingle(CustomerAccountSiteXmlFragment,xpath2); if
(containsKey(output2,xpath2[0]))
 { partySiteId = get(output2,xpath2[0]);
 } if (partySiteId == "") { partySiteId = errorString;
 }
 } partySiteNumber = ""; xpathPartySiteNumber = string[1];
// get the XML Element called Customer AccountSite where ID = returnSiteId
xpathPartySiteNumber[0] = "//ns2:Value/ns2:PartySite[ns1:PartySiteId=" + partySiteId + "]";
 outputPartySiteNumber = readxmlsingle(organizationSoapResponse, xpathPartySiteNumber);
 if (containsKey(outputPartySiteNumber,xpathPartySiteNumber[0])) {
 PartySiteNumberXmlFragment = get(outputPartySiteNumber,xpathPartySiteNumber[0]);
 xpath3 = string[1]; xpath3[0] = "//ns1:PartySiteNumber"; output3 =
readxmlsingle(PartySiteNumberXmlFragment,xpath3); if (containsKey(output3,xpath3[0]))
 { partySiteNumber = get(output3,xpath3[0]);
 }
 } print "returnPartyId: " + returnPartyId; print "returnAccountNumber : " +
returnAccountNumber ; print "returnSiteId : " + returnSiteId ; print "partySiteId : " +

Oracle CPQ with Subscription Management Integration Guide 81

partySiteId; print "billToSiteUseId"+ returnBillToSiteUseId ; print "partySiteNumber : " +
partySiteNumber ;

return
"1~partyId_t~"+returnPartyId+"|"+"1~accountNumber_t~"+returnAccountNumber+"|"+"1~billToSite
UseId_t~" +returnBillToSiteUseId +"|" ;

Oracle CPQ with Subscription Management Integration Guide 82

APPENDIX I: OPEN TRANSACTION LINE BML
The BML for the Open Transaction Line action is used to display the details for a specific Transaction Line.

returnVal = "";
lineHierInfo = commerce.oRCL_abo_BuildLineItemHierarchy();
returnVal = returnVal + commerce.oRCL_abo_PostDefaultsOnLineItems(lineHierInfo);
returnVal = returnVal+ commerce.oRCL_sm_postDefaultOnLineItem(lineHierInfo);

return returnVal;

Oracle CPQ with Subscription Management Integration Guide 83

APPENDIX J: SAVE BML
Transaction - Save

The BML for the Save action is used to save the current state of a Transaction.

Below BML is used for Advanced Modify - Before Formulas

contractPeriodsStr = stringbuilder();
for line in transactionLine {
 sbappend(contractPeriodsStr, line._document_number, "~contractedPeriods_l~",
 string(commerce.oRCL_sm_calculateContractPeriods(line.contractStartDate_l,
line.contractEndDate_l, line.priceType_l, line.pricePeriod_l)), "|");
}
return sbtostring(contractPeriodsStr);

Below BML is used for Advanced Modify – After Formulas

return commerce.calculateRollupRevenues();

Transaction Line – Save

The BML for the Save action is used to save the current state of a Transaction Line.

Below BML is used for Advanced Modify – Before Formulas.

//At TrnsactionLine level save
//System Variable Name Type Description
//_system_current_document_number String Current Document Number

//Variable Name for (Transaction Line) Type Description
//transactionLine Collection of Sub Documents
// _document_number String Document Number
// _price_calculation_info String Calculation Information
// oRCL_pRC_tierd_l String Tiered

//Imported Util Functions
//String _SM.oRCL_pRC_populateCharges(JsonArray charges, String documentNumber)

returnString = "";
for line in transactionLine {
 if(line._document_number == _system_current_document_number){
 if(line.oRCL_pRC_tierd_l == "N" AND line._price_calculation_info <> "") {
 calcInfo = jsonarrayget(jsonarray(line._price_calculation_info),0,"json");
 charges = jsonget(calcInfo,"charges", "jsonArray");
 returnString = returnString + util._SM.oRCL_pRC_populateCharges(charges,
line._document_number);
 }
 }
}

return returnString;

Oracle CPQ with Subscription Management Integration Guide 84

APPENDIX K: PAYLOAD TEMPLATE FILE CONTENT
The BML associated with the payload template files referenced in Add Template Dependencies to File Manager follows.

findOrganizationPayload.txt

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body
xmlns:ns1="http://xmlns.oracle.com/apps/cdm/foundation/parties/organizationService/applicat
ionModule/types/">
 <ns1:findOrganization>
 <ns1:findCriteria xmlns:ns2="http://xmlns.oracle.com/adf/svc/types/">
 <ns2:filter>
 <ns2:conjunction>And</ns2:conjunction>
 <ns2:group>
 <ns2:conjunction>And</ns2:conjunction>
 <ns2:item>
 <ns2:conjunction>And</ns2:conjunction>
 <ns2:attribute>PartyName</ns2:attribute>
 <ns2:operator>=</ns2:operator>
 <ns2:value>{{customerCompanyName_t}}</ns2:value>
 </ns2:item>
 </ns2:group>
 </ns2:filter>
 </ns1:findCriteria>
 <ns1:findControl xmlns:ns3="http://xmlns.oracle.com/adf/svc/types/">
 <ns3:retrieveAllTranslations></ns3:retrieveAllTranslations>
 </ns1:findControl>
 </ns1:findOrganization>
 </soap:Body>
</soap:Envelope>

customerAccountPayload.txt

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ns1="http://xmlns.oracle.com/apps/cdm/foundation/parties/customerAccountService/appli
cationModule/types/" xmlns:ns2="http://xmlns.oracle.com/adf/svc/types/">
 <soapenv:Body>
 <ns1:findCustomerAccount>
 <ns1:findCriteria>
 <ns2:filter>
 <ns2:conjunction>And</ns2:conjunction>
 <ns2:group>
 <ns2:conjunction>And</ns2:conjunction>
 <ns2:item>
 <ns2:conjunction>And</ns2:conjunction>
 <ns2:attribute>PartyId</ns2:attribute>
 <ns2:operator>=</ns2:operator>
 <ns2:value>{{returnPartyId}}</ns2:value>
 </ns2:item>
 </ns2:group>
 </ns2:filter>
 </ns1:findCriteria>
 <ns1:findControl>
 <ns2:retrieveAllTranslations>false</ns2:retrieveAllTranslations>
 </ns1:findControl>
 </ns1:findCustomerAccount>
 </soapenv:Body>
</soapenv:Envelope>

Oracle CPQ with Subscription Management Integration Guide 85

APPENDIX L: LIBRARY FUNCTION BML
The Oracle CPQ Subscription Management package adds several library functions to the Commerce process. The BML
associated with each of the library functions is provided below.

String getTemplateLocation(String system, String operation)

The code for this library function is provided below for reference.

//1. Get Template File
templateUrl = "";
//bmql query
resultSet = bmql("Select Template from INT_SYSTEM_TEMPLATES where System = $system and
Operation = $operation");

//loop through the records
for record in resultSet {
 templateUrl = get(record,"Template");
 print templateUrl;
}

temp=split(templateUrl,"image");

return temp[1];

String Dictionary getUserAttributes(String system)

The code for this library function is provided below for reference.

//Name: getUserAttributes
//Variable Name: getUserAttributes
//Description: Queries UserName,Password from DataTable INT_SYSTEM_DETAILS and adds it in
the payload.
//Input: Main Doc Attr: orderId
//System Attr: _system_user_first_name
//Return Type: String Dictionary
//Dependency : getPassword
//bmql query
resultSet = bmql("Select Username from INT_SYSTEM_DETAILS where System = $system");
payload = dict("string");
//loop through the records
for record in resultSet {
 userName = get(record,"Username");
 password = "Welcome1";
 put(payload, "USERNAME", userName);
 put(payload, "PASSWORD", password);

}

//2. Set the UTC time in header

utcFormatDate = datetostr(getdate(),"yyyy-MM-dd\'T\'HH:mm:ss.SSS\'Z\'", "UTC");
put(payload, "UTCTIME", utcFormatDate);

//3. Useful only for Replacing DOO Template
curDate = datetostr(getdate(),"dd-MM-yyyy");
msgId = "BM_ORDER_"+orderID+"_SubmittedBy"+_system_user_first_name+"_ON_"+curDate;

put(payload, "MSGID", msgId);

//4. Return dictionary
return payload;

Oracle CPQ with Subscription Management Integration Guide 86

String invokeWebService(String system, String soapReq)

The code for this library function is provided below for reference.

//1. Get webservice endpoint for the system
resultSet = bmql("Select Endpoint,Username,Password from INT_SYSTEM_DETAILS where System =
$system");
endpoint = "";
username = "";
password = "";

//loop through the records
for record in resultSet {
 endpoint = get(record,"Endpoint");
 username = get(record,"Username");
 password = get(record,"Password");
}
//2. Invoke the web service
headerValues = dict("string");
put(headerValues, "Content-Type", "text/xml; charset=utf-8");
encodeCredential = encodebase64(username+":"+password);
auth = "Basic " + encodeCredential;
put(headerValues,"Authorization",auth);

errorString = "Error in "+system+" invocation";

soapResponse= urldatabypost(endPoint , soapReq,errorString,headerValues,true); // sends the
soap call and returns response to variable.
print "going to print soapResponse";
//3. Return the response
return soapResponse;

Oracle CPQ with Subscription Management Integration Guide 87

String Populate Discounts

The code for this library function is provided below for reference.

discStDtEndDtFormat = "yyyy-MM-dd";
contractStartDate = strtodate(contractStartDateStr, "yyyy-MM-dd");
returnStrBuilder = stringbuilder("");
adjustmentList = bmql("select Start_Date, End_Date, Discount_Name, Discount_Value,
Discount_Type, Discount_Reason, Discount_Type, Discount_Effectivity, Effectivity_Periods
from ORCL_PRC_DISCOUNTS where Product=$partNumber ORDER BY Start_Date, End_Date");
for adjustment in adjustmentList {
 discFound = false;
 discStDtStr = get(adjustment,"Start_Date");
 discEndDtStr = get(adjustment,"End_Date");

 if((isnull(discStDtStr) or trim(discStDtStr) == "") and (isnull(discEndDtStr) or
trim(discEndDtStr) == "")) {
 discFound = true;
 } elif (trim(discStDtStr) <> "" and (isnull(discEndDtStr) or trim(discEndDtStr) == "")) {

 discStDt = strtodate(get(adjustment,"Start_Date"), discStDtEndDtFormat);
 if(comparedates(discStDt, contractStartDate) <= 0) {
 discFound = true;
 }
 } elif ((isnull(discStDtStr) or trim(discStDtStr) == "") and trim(discEndDtStr) <> "") {
 discEndDt = strtodate(get(adjustment,"End_Date"), discStDtEndDtFormat);
 if(comparedates(discEndDt, contractStartDate) >= 0) {
 discFound = true;
 }
 } else {
 discStDt = strtodate(get(adjustment,"Start_Date"), discStDtEndDtFormat);
 discEndDt = strtodate(get(adjustment,"End_Date"), discStDtEndDtFormat);
 if(comparedates(discStDt, contractStartDate) <= 0 and comparedates(discEndDt,
contractStartDate) >= 0) {
 discFound = true;
 }
 }

 if(discFound) {
 sbappend(returnStrBuilder, "|", lineDocNumber,
"~customDiscountType_l~",get(adjustment,"Discount_Type"));
 sbappend(returnStrBuilder, "|", lineDocNumber,
"~customDiscountValue_l~",get(adjustment,"Discount_Value"));
 sbappend(returnStrBuilder, "|", lineDocNumber,
"~discountEffectivityType_l~",get(adjustment,"Discount_Effectivity"));
 break;
 }
}
return sbtostring(returnStrBuilder);

String Populate Amend Charge

The code for this library function is provided below for reference.

//Name:Populate Amend Charge
//Variable Name:populateAmendCharge
//Description:Populates charge information directly from OSS for AMEND and RENEW flow.
//Return Type:String

Oracle CPQ with Subscription Management Integration Guide 88

//define constants for action codes noUpdateCode = "NO_UPDATE"; updateCode = "UPDATE";
deleteCode = "DELETE"; addCode = "ADD"; actionCode = "";
 ret = ""; chargeMap = dict("string"); for line in transactionLine{ ossStr = "";
if(NOT(len(line._line_bom_parent_id)>0) AND len(line.itemInstanceId_l)>0){
actionCode = line.oRCL_ABO_ActionCode_l; chargeMap =
commerce.getOldSubscriptionChargeMap();
 } else {
 actionCode_l = line.oRCL_ABO_ActionCode_l; if((actionCode == noUpdateCode
OR actionCode == updateCode) AND NOT(actionCode_l == addCode)){
thisJsonStr = get(chargeMap,line.itemInstanceId_l); thisJson =
json(thisjsonStr); chargeArray = jsonarray(jsonget(thisJson,"charges"));
subsProdId = jsonget(thisJson,"SubscriptionProductPuid"); charges =
string[jsonarraysize(chargeArray)]; i = 0; ossArray = jsonarray();
for chrg in charges{ chargeJson = json(); chrgJson =
jsonarrayget(chargeArray,i,"json"); i = i + 1;
jsonput(chargeJson,"chargeName",jsonget(chrgJson ,"ChargeName"));
jsonput(chargeJson,"unitPrice",jsonget(chrgJson ,"UnitListPrice","float"));
jsonput(chargeJson,"chargeType",jsonget(chrgJson ,"PriceType"));
jsonput(chargeJson,"periodicity",jsonget(chrgJson ,"PricePeriodicity"));
if(NOT(isnull(jsonget(chrgJson ,"Allowance")))){
jsonput(chargeJson,"Allowance",jsonget(chrgJson ,"Allowance","integer"));
 } if(NOT(isnull(jsonget(chrgJson ,"BlockSize")))){
jsonput(chargeJson,"BlockSize",jsonget(chrgJson ,"BlockSize","integer"));
 }
jsonput(chargeJson,"UsagePriceLockFlag",jsonget(chrgJson
,"UsagePriceLockFlag","boolean")); chargePuid = jsonget(chrgJson
,"ChargePuid") ; if(jsonget(chrgJson,"TieredFlag")=="true"){
jsonput(chargeJson,"tiered", "Y");
jsonput(chargeJson,"tierType",jsonget(chrgJson ,"TierType")); urlParam
= subsProdId+"/child/charges/"+chargePuid+"?expand=all"; itemStr =
util.invokeOss(json(), "GET", "OSS-Amend", urlParam, false); item =
json(itemStr); tierArray = jsonget(item,"chargeTiers","jsonarray");
tier = string[jsonarraysize(tierArray)]; j = 0;
tiers = jsonarray(); for each in tier { oneTier
= jsonarrayget(tierArray,j,"json"); tierJson = json();
j = j + 1;
jsonput(tierJson,"BlockSize",jsonget(oneTier,"BlockSize","integer"));
jsonput(tierJson,"TierTo",jsonget(oneTier,"TierTo","integer"));
jsonput(tierJson,"TierFrom",jsonget(oneTier,"TierFrom","integer"));
jsonput(tierJson,"ListPrice",jsonget(oneTier,"ListPrice","float"));
jsonput(tierJson,"PriceFormat",jsonget(oneTier,"PriceFormat"));

jsonput(tierJson,"SequenceNumber",jsonget(oneTier,"SequenceNumber","integer"));
jsonarrayappend(tiers,tierJson);
 } jsonput(chargeJson,"tierList", tiers);
 } jsonarrayappend(ossArray,chargeJson);
 } charge = json(); jsonput(charge,"charges",ossArray);
ossChargeArray = jsonarray(); jsonarrayappend(ossChargeArray,charge);
 ossStr = jsonarraytostr(ossChargeArray); if(len(ret)>0){
ret = ret+"|";
 } ret = ret + line._document_number+"~oSSCharge~"+ossStr;
 }
 }
} return ret;

Integer Calculate Contract Periods

This is a Commerce library function that calculates number of periods for given contract start date and end date based on
price type and periodicity. The code for this library function is provided below for reference.

Oracle CPQ with Subscription Management Integration Guide 89

monthsToAdd = 1; //months counter for monthly and annual parts.
//return 1 for all invalid use cases
if(priceType <> "Recurring" AND priceType <> "Usage"){
 return 1;
}else {
 if(periodicity == "Per Month"){
 monthsToAdd = 1;
 }elif(periodicity == "Per Year"){
 monthsToAdd = 12;
 }else{
 return 1;
 }
}
returnPeriods = 1;
if(contractStartDate <> "" AND isnull(contractStartDate) <> true AND contractEndDate <> ""
AND isnull(contractEndDate) <> true){
 startDate = strtojavadate(contractStartDate , "MM/dd/yyyy");
 endDate = strtojavadate(contractEndDate , "MM/dd/yyyy");
 periodInDays = getdiffindays(startDate, endDate);
 count = Integer[(periodInDays / (30 * monthsToAdd))+1];
 //Keep adding months to contract start date till we reach contract end date. Number of
times we add months will be the final contract periods.
 for i in count{
 nextDate = addmonths(startDate, monthsToAdd * returnPeriods);
 dayOfAddedMonth = datetostr(nextDate, "dd");
 dayOfStartDate = datetostr(startDate, "dd");
 compareDate = nextDate;
 if(atoi(dayOfAddedMonth) == atoi(dayOfStartDate)){
 compareDate = minusdays(nextDate, 1);
 }
 if(comparedates(compareDate, endDate) >= 0) {
 break;
 }
 returnPeriods = returnPeriods + 1;//Increment the returnPeriods counter if end
date(nextDate) for the period is before the contract end date.
 }
}
return returnPeriods;

Oracle CPQ with Subscription Management Integration Guide 90

APPENDIX M: SUBSCRIPTION PRICING UTILITY BMLS
The Oracle CPQ Subscription Management package includes Subscription Pricing BML for the following:

 Calculate List Price

 Prepare Tier Pricing

 Populate Charges for Arrays

 Populates Tier Information for Arrays

 Oracle Pricing Subscription Base Profile

 Get Lookups

Calculate List Price (oRCL_pRC_calculateListPrice) BML

The BML for the Calculate List Price action is used to calculate the list price for a product.

listPrice = 0;
if(quantity > allowance){
 finalQuantity = quantity - allowance;
}else{
 finalQuantity = 0;
}

if(blockSize > 0){
 finalQuantity = ceil((finalQuantity * 1.0) / blockSize);
}

listPrice = listPrice + price* finalQuantity ;
return listPrice;

Prepare Tier Info JSON (oRCL_pRC_prepareTierInfoJson) BML

The BML for the Prepare Tier Info JSON action is used to prepare tier pricing information for a product.

tierInfoJson = json();

jsonput(tierInfoJson, "SequenceNumber", tierSeq);
jsonput(tierInfoJson, "TierFrom", tierMin);
jsonput(tierInfoJson, "TierTo", tierMax);
jsonput(tierInfoJson, "ListPrice", tierPrice);

if(tierBlockSize > 1){
 jsonput(tierInfoJson, "PriceFormat", "ORA_PER_BLOCK");
}
else{
 jsonput(tierInfoJson, "PriceFormat", "ORA_PER_UNIT");
}

jsonput(tierInfoJson, "BlockSize", tierBlockSize);

return tierInfoJson;

Oracle CPQ with Subscription Management Integration Guide 91

Populate Charges (oRCL_pRC_populateCharges) BML

The BML for the Populate Charges action is used to populate the charge information for a charge array. This BML is invoked
from Transaction Line Advanced Default – After Formulas.

returnString = "";

chargesSize = jsonarraysize(charges);
itr = string[chargesSize];
chargecount=0;
for i in itr {
 charge = jsonArrayget(charges, chargecount, "json");
 chargecount = chargecount + 1;

 chargeType = jsonget(charge,"chargeType","string");
 periodicity = jsonget(charge,"periodicity","string");
 // Get CPQ codes for charge type and periodicity.
 lookups = util.oRCL_pRC_getLookups(periodicity, chargeType, false);

 returnString = returnString + "|" + documentNumber + "~priceType_l~" + get(lookups,
"ChargeType");

 if(isnull(periodicity) == false){
 returnString = returnString + "|" + documentNumber + "~pricePeriod_l~" + get(lookups,
"Periodicity");
 }

 if(jsonpathcheck(charge,"$.Allowance")){
 returnString = returnString + "|" + documentNumber + "~oRCL_pRC_blockAllowance~" +
string(jsonget(charge,"Allowance","integer"));
 }

 if(jsonpathcheck(charge,"$.BlockSize")){
 returnString = returnString + "|" + documentNumber + "~oRCL_pRC_blockSize~" +
string(jsonget(charge,"BlockSize","integer"));
 }

 tiered = "N";
 if(NOT(isnull(jsonget(charge ,"tiered")))){
 tiered = jsonget(charge ,"tiered", "string");
 }
 returnString = returnString + "|" + documentNumber + "~oRCL_pRC_tierd_l~" + tiered + "|";

 if(tiered == "Y") {

 //jsonput(chargeJson,"oRCL_pRC_tiertype_l",jsonget(charge,"tierType"));
 returnString = returnString + "|" + documentNumber + "~oRCL_pRC_tiertype_l~" +
jsonget(charge,"tierType","string") + "|";
 tierList = jsonget(charge, "tierList", "jsonArray");
 if(isnull(tierList) == false){
 returnString = returnString + "|" + util.oRCL_pRC_populateTiers(tierList,
documentNumber);
 }
 }
}
return returnString;

Oracle CPQ with Subscription Management Integration Guide 92

Populate Tiers (oRCL_pRC_populateTiers) BML

The BML for the Populate Tiers action is used to populate tier information for a tier array. This BML is invoked from
Transaction Line Advanced Default – After Formulas.

returnString = ""; tiers = jsonArray(); tierListSize = jsonarraysize(tierList); itr =
string[tierListSize]; tierCount=0; for j in itr { tier = json(); tierInfo =
jsonarrayget(tierList ,tierCount,"json"); tierCount = tierCount + 1; if(isnull(tierInfo)
== false) { jsonput(tier, "oRCL_pRC_tierSequence", jsonget(tierInfo
,"SequenceNumber","integer")); jsonput(tier, "oRCL_pRC_tierFrom", jsonget(tierInfo
,"TierFrom","integer")); jsonput(tier, "oRCL_pRC_tierTo", jsonget(tierInfo
,"TierTo","integer")); jsonput(tier, "oRCL_pRC_tierBlockSize", jsonget(tierInfo
,"BlockSize","integer")); jsonput(tier, "oRCL_pRC_tierListPrice", jsonget(tierInfo
,"ListPrice","float")); jsonput(tier, "oRCL_pRC_tierPriceFormat", jsonget(tierInfo
,"PriceFormat","string"));
 }
 jsonarrayappend(tiers , tier);
} tiersSize = jsonarraysize(tiers); if(tiersSize > 0) { returnString = returnString +
documentNumber + "~oRCL_pRC_tierInfo~" + jsonarraytostr(tiers)+"|";
} return returnString;

Oracle Pricing Subscription Base Profile (oRCL_pRC_oraclePricingSubscriptionBaseProfile) BML

The BML for Oracle Pricing Subscription Base Profile action is used to calculate the price based on the pricing model.

// This utility BML will calculate the price based on pricing model(Single or Tiered).
// Name: Oracle Pricing Subscription Base Profile
// Variable Name: oRCL_pRC_oraclePricingSubscriptionBaseProfile
// Input:
// partNumber(String) - This is used to look up rows from the ORCL_PRC_BASE_CHGS table
// quantity(Integer) - Used for calculating the price.
// chargeName(String)
// lockedAllowance(Integer)
// lockedBlockSize(Integer)
// lockedListPrice(Float)
// tierFrom(Integer[])
// tierTo (Integer[])
// tierListPrice(Float[])
// tierBlockSize(Integer[])
// lockUsage(Boolean)
// Output:
// JSON - Includes UnitPrice and other JSON elements for Subscription Service.
// Dependency : Calculate List Price, Prepare Tier Info Json
//
// Note : Input parameter chargeName is no more used in calculation but keeping here so
that OSS doesn't have to modify their // payload.

lang = dict("string");
fields = dict("string");
where = "";

put(fields, "$field1", partNumber);
where = "Product= $field1";

// Get the results from the ORCL_PRC_BASE_CHGS to calculate the price.
charges = bmql("select Charge_Id, Price, Block_Size, Allowance, Charge_Type, Periodicity,
Tiered, TierType from ORCL_PRC_BASE_CHGS where $where",lang,fields);
chargeList = jsonarray();
returnPayload = json();
errorInPricing = false;

Oracle CPQ with Subscription Management Integration Guide 93

errorMessagesJsonArr = jsonarray();
unitPriceEach = 0.0;
for charge in charges { // Iterating throgh charges queried from data table
ORCL_PRC_BASE_CHGS.
 listPrice = 0.0;
 unitPrice = 0.0;
 unitListPrice = 0.0;

 tierList = jsonarray();
 // Reading the each charge details
 tiered = get(charge, "Tiered");
 chargeId = getint(charge, "Charge_Id");
 chargeType = get(charge, "Charge_Type");
 quantityForCalc = 0.0;
 if(chargeType == "Usage") {
 quantityForCalc = usageValue;
 } else {
 quantityForCalc = quantity;
 }

 periodicity = get(charge, "Periodicity");
 tierType = get(charge,"TierType");
 allowance = getint(charge, "Allowance");
 chargeJson= json();
 if(tiered == "N"){ // Non tiered
 // Checking charge is of type lockable, if yes and locked then calculating the price
based on locked values
 if(chargeType == "Usage" AND lockUsage) {
 price = lockedListPrice;
 blockSize = lockedBlockSize;
 allowance = lockedAllowance;
 }else{
 price = getfloat(charge, "Price");
 blockSize = getint(charge, "Block_Size");
 }

 // Price from data table
 unitListPrice = price;

 // Calculating List Price
 listPrice = util.oRCL_pRC_calculateListPrice(quantityForCalc, allowance, blockSize,
price);

 // Calculating Unit Price
 if(quantityForCalc <> 0){
 unitPrice = listPrice / quantityForCalc;
 }

 }else{
 if(tierType == "ORA_ALL_TIERS"){
 prevMax = 0;
 tierSeq = 1;
 // Checking charge is of type lockable, if yes and locked then calculating the
price based on locked values
 if(chargeType == "Usage" AND lockUsage) {
 tierSize= sizeofarray(tierFrom);
 tierLoopArr = range(tierSize);
 for tierNum in tierLoopArr{
 tierMin = tierFrom[tierNum];
 tierMax = tierTo[tierNum];

Oracle CPQ with Subscription Management Integration Guide 94

 blockSize = tierBlockSize[tierNum];
 tierPrice = tierListPrice[tierNum];
 if(tierMax == 0 OR (tierMax >= quantityForCalc)){ // True if we are at the
last row of the tier.
 iterationquantityForCalc = quantityForCalc - prevMax; // Get the
quantityForCalc to charge for this tier.
 if(iterationquantityForCalc < 0){
 iterationquantityForCalc = 0;
 }
 }else{ // True if the tier still has more rows after first tier.
 iterationquantityForCalc = tierMax - prevMax; // Get the
quantityForCalc to charge for this row.
 }

 listPrice = listPrice +
util.oRCL_pRC_calculateListPrice(iterationquantityForCalc, allowance, blockSize,
tierPrice);

 if(quantityForCalc <> 0){
 unitPrice = listPrice / quantityForCalc;
 }

 // Preparing tier info
 tierInfoJson = util.oRCL_pRC_prepareTierInfoJson(tierSeq, tierMin, tierMax,
tierPrice, blockSize);

 //Adding tier Info to tier list
 jsonarrayappend(tierList, tierInfoJson);

 prevMax = tierMax; // Set the previous max for the if statement above on
the next loop.
 tierSeq = tierSeq + 1; // Increment the tier sequence number for the next
iteration of the loop.
 if(tierMax <= 0){ // stop processing tiers if <= 0 since that is used as a
max identifier
 break;
 }
 }
 }else{
 // If tiered pricing then querying ORCL_PRC_BASE_TIERS data table to get the
tier info.
 tiers = bmql("select Tier_Min, Tier_Max, Block_Size, Price from
ORCL_PRC_BASE_TIERS where Charge_Id = $chargeId ORDER BY Tier_Min ASC");

 for tier in tiers { // Iterating through tiers
 // Reading the tier info
 tierMin = getint(tier, "Tier_Min");
 tierMax = getint(tier, "Tier_Max");
 blockSize = getint(tier, "Block_Size");
 tierPrice = getfloat(tier, "Price");
 if(tierMax == 0 OR (tierMax >= quantityForCalc)){ // True if we are at the
last row of the tier.
 iterationquantityForCalc = quantityForCalc - prevMax; // Get the
quantityForCalc to charge for this tier.
 if(iterationquantityForCalc < 0){
 iterationquantityForCalc = 0;
 }
 }else{ // True if the tier still has more rows after first tier.
 iterationquantityForCalc = tierMax - prevMax; // Get the
quantityForCalc to charge for this row.

Oracle CPQ with Subscription Management Integration Guide 95

 }

 listPrice = listPrice +
util.oRCL_pRC_calculateListPrice(iterationquantityForCalc , allowance, blockSize ,
tierPrice);

 if(quantityForCalc <> 0){
 unitPrice = listPrice / quantityForCalc;
 }
 // Preparing tier info
 tierInfoJson = util.oRCL_pRC_prepareTierInfoJson(tierSeq, tierMin, tierMax,
tierPrice, blockSize);

 //Adding tier Info to tier list
 jsonarrayappend(tierList, tierInfoJson);

 prevMax = tierMax; // Set the previous max for the if statement above on
the next loop.
 tierSeq = tierSeq + 1; // Increment the tier sequence number for the next
iteration of the loop.
 if(tierMax <= 0){ // stop processing tiers if <= 0 since that is used as a
max identifier
 break;
 }
 }

 }
 }
 if(tierType == "ORA_HIGHEST_TIER"){

 tierSeq = 1;
 // Checking charge is of type lockable, if yes and locked then calculating the
price based on locked values
 if(chargeType == "Usage" AND lockUsage) {
 tierSize= sizeofarray(tierFrom);
 tierLoopArr = range(tierSize);
 for tierNum in tierLoopArr{
 tierMin = tierFrom[tierNum];
 tierMax = tierTo[tierNum];
 blockSize = tierBlockSize[tierNum];
 tierPrice = tierListPrice[tierNum];

 if(tierMin <= quantityForCalc AND (tierMax >= quantityForCalc OR tierMax ==
0)){ // True if we are at the last row of the tier.
 listPrice = listPrice + util.oRCL_pRC_calculateListPrice(quantityForCalc,
allowance, blockSize, tierPrice);

 if(quantityForCalc <> 0){
 unitPrice = listPrice / quantityForCalc;
 }
 }

 // Preparing tier info
 tierInfoJson = util.oRCL_pRC_prepareTierInfoJson(tierSeq, tierMin, tierMax,
tierPrice, blockSize);

 //Adding tier Info to tier list
 jsonarrayappend(tierList, tierInfoJson);
 tierSeq = tierSeq + 1; // Increment the tier sequence number for the next
iteration of the loop.

Oracle CPQ with Subscription Management Integration Guide 96

 }
 }else{
 // If tiered pricing then querying ORCL_PRC_BASE_TIERS data table to get the
tier info.
 tiers = bmql("select Tier_Min, Tier_Max, Block_Size, Price from
ORCL_PRC_BASE_TIERS where Charge_Id = $chargeId ORDER BY Tier_Min ASC");

 for tier in tiers { // Iterating through tiers
 // Reading the tier info
 tierMin = getint(tier, "Tier_Min");
 tierMax = getint(tier, "Tier_Max");
 blockSize = getint(tier, "Block_Size");
 tierPrice = getfloat(tier, "Price");
 if(tierMin <= quantityForCalc AND (tierMax >= quantityForCalc OR tierMax ==
0)){ // True if we are at the last row of the tier.
 listPrice = listPrice + util.oRCL_pRC_calculateListPrice(quantityForCalc,
allowance, blockSize, tierPrice);

 if(quantityForCalc <> 0){
 unitPrice = listPrice / quantityForCalc;
 }
 }
 // Preparing tier info
 tierInfoJson = util.oRCL_pRC_prepareTierInfoJson(tierSeq, tierMin, tierMax,
tierPrice, blockSize);

 //Adding tier Info to tier list
 jsonarrayappend(tierList, tierInfoJson);

 tierSeq = tierSeq + 1; // Increment the tier sequence number for the next
iteration of the loop.

 }

 }

 }

 }

 // Preparing the charge details
 jsonput(chargeJson, "chargeName", chargeName);
 jsonput(chargeJson, "unitPrice", unitPrice);
 jsonput(chargeJson, "listPrice", listPrice);
 jsonput(chargeJson, "unitListPrice",unitListPrice);

 // Get OSS codes for charge type and periodicity.
 lookups = util.oRCL_pRC_getLookups(periodicity, chargeType, true);
 jsonput(chargeJson, "chargeType", get(lookups, "ChargeType"));
 jsonput(chargeJson, "periodicity", get(lookups, "Periodicity"));
 if(tiered == "Y"){ // Include Tier information if tiered pricing.
 jsonput(chargeJson, "tiered", "Y");
 jsonput(chargeJson, "tierList", tierList);
 jsonput(chargeJson, "tierType", tierType);
 }else{
 jsonput(chargeJson, "Allowance", allowance);
 jsonput(chargeJson, "BlockSize", blockSize);
 }
 // Adding charge details to charge list

Oracle CPQ with Subscription Management Integration Guide 97

 jsonarrayappend(chargeList , chargeJson);
 if(chargeType == "Usage"){
 unitPriceEach = listPrice;
 } elif (quantityForCalc <> 0){
 unitPriceEach = unitPrice;
 }else {
 unitPriceEach =unitListPrice;
 }
}

calculationInfoPayload = json();

jsonput(returnPayload, "unitPrice", unitPriceEach);
jsonput(calculationInfoPayload , "charges", chargeList);

jsonput(calculationInfoPayload, "hasErrors", errorInPricing); // Adding the hasErrors item
if(errorInPricing){ // Including Error information if there are errors
 jsonput(calculationInfoPayload, "errorInfo", errorMessagesJsonArr);
}
jsonput(returnPayload, "calculationInfo", calculationInfoPayload); // Adding the
calculationInfo child to the payload.
return returnPayload;

Get Lookups (oRCL_pRC_getLookups) BML

This BML is used to find out matching OSS or CPQ code for periodicity and charge type.

lookupDict = dict("string");

if(cpqCode) {
 ossLookups = bmql("select Type, OSS_Code from ORCL_PRC_LOOKUP where CPQ_Code =
$chargeTypeCode or CPQ_Code = $periodicityCode");
 for ossLookup in ossLookups {
 lookupType = get(ossLookup, "Type");
 if(lookupType == "Periodicity") {
 put(lookupDict, "Periodicity", get(ossLookup, "OSS_Code"));
 } elif (lookupType == "ChargeType") {
 put(lookupDict, "ChargeType", get(ossLookup, "OSS_Code"));
 }
 }
} else {
 cpqLookups = bmql("select Type, CPQ_Code from ORCL_PRC_LOOKUP where OSS_Code =
$chargeTypeCode or OSS_Code = $periodicityCode");
 for cpqLookup in cpqLookups {
 lookupType = get(cpqLookup, "Type");
 if(lookupType == "Periodicity") {
 put(lookupDict, "Periodicity", get(cpqLookup, "CPQ_Code"));
 } elif (lookupType == "ChargeType") {
 put(lookupDict, "ChargeType", get(cpqLookup, "CPQ_Code"));
 }
 }
}

return lookupDict;

Oracle CPQ with Subscription Management Integration Guide 98

APPENDIX N: IMPLEMENTATION FOR DISCOUNT EFFECTIVITY TYPES
The Oracle CPQ Subscription Management package includes discount effectivity of type All Term [ORA_ALL_TERM]. Follow
below changes if other types of effectivity has to be included:

Commerce Attributes

Make below changes to Transaction Line attributes:

• Update Discount Effectivity Type (discountEffectivityType_l)
o Add below menu entries

 Starting Period (ORA_PERIODS_FROM_START_DT)
 Ending Period (ORA_PERIODS_BEFORE_END_DT)
 Specific Periods (ORA_SPECIFIC_PERIODS)

• Add new attribute Discount Effectivity Periods (discountEffectivityPeriods_l)
o Type : Text
o This attribute should be editable so that user can override default value.

Commerce Library Functions

Make below changes to commerce library function:

 Edit Apply Discounts (oRCL_sm_applyDiscounts)

 Replace existing script with the script below.

discStDtEndDtFormat = "yyyy-MM-dd";
contractStartDate = strtodate(contractStartDateStr, contractStartDateFormat);
returnStrBuilder = stringbuilder("");
adjustmentList = bmql("select Start_Date, End_Date, Discount_Name, Discount_Value,
Discount_Type, Discount_Reason, Discount_Type, Discount_Effectivity, Effectivity_Periods
from ORCL_PRC_DISCOUNTS where Product=$partNumber ORDER BY Start_Date, End_Date");
for adjustment in adjustmentList {
 discFound = false;
 discStDtStr = get(adjustment,"Start_Date");
 discEndDtStr = get(adjustment,"End_Date");

 if((isnull(discStDtStr) or trim(discStDtStr) == "") and (isnull(discEndDtStr) or
trim(discEndDtStr) == "")) {
 discFound = true;
 } elif (trim(discStDtStr) <> "" and (isnull(discEndDtStr) or trim(discEndDtStr) == ""))
{
 discStDt = strtodate(get(adjustment,"Start_Date"), discStDtEndDtFormat);
 if(comparedates(discStDt, contractStartDate) <= 0) {
 discFound = true;
 }
 } elif ((isnull(discStDtStr) or trim(discStDtStr) == "") and trim(discEndDtStr) <> "")
{
 discEndDt = strtodate(get(adjustment,"End_Date"), discStDtEndDtFormat);
 if(comparedates(discEndDt, contractStartDate) >= 0) {
 discFound = true;
 }
 } else {
 discStDt = strtodate(get(adjustment,"Start_Date"), discStDtEndDtFormat);
 discEndDt = strtodate(get(adjustment,"End_Date"), discStDtEndDtFormat);
 if(comparedates(discStDt, contractStartDate) <= 0 and comparedates(discEndDt,
contractStartDate) >= 0) {
 discFound = true;
 }
 }

 if(discFound) {

Oracle CPQ with Subscription Management Integration Guide 99

 validDiscEntry = false;
 discEffectivityType = get(adjustment,"Discount_Effectivity");
 discEffectivityPrdsStr = get(adjustment,"Effectivity_Periods");
 if(discEffectivityType == "ORA_ALL_TERM") {
 sbappend(returnStrBuilder, "|", lineDocNumber,
"~discountEffectivityPeriods_l~", string(contractPeriods));
 validDiscEntry = true;
 } elif ((discEffectivityType == "ORA_PERIODS_FROM_START_DT" or discEffectivityType
== "ORA_PERIODS_BEFORE_END_DT") and isnumber(discEffectivityPrdsStr) and priceType <> "One
Time") {
 discEffectivityPrds = atoi(discEffectivityPrdsStr);
 if(discEffectivityPrds < contractPeriods) {
 sbappend(returnStrBuilder, "|", lineDocNumber,
"~discountEffectivityPeriods_l~",discEffectivityPrdsStr);
 } else {
 sbappend(returnStrBuilder, "|", lineDocNumber,
"~discountEffectivityPeriods_l~", string(contractPeriods));
 }
 validDiscEntry = true;
 } elif (discEffectivityType == "ORA_SPECIFIC_PERIODS" and priceType <> "One Time")
{
 effPrdsArray = split(discEffectivityPrdsStr, ",");
 if(isnull(effPrdsArray) == false and sizeofarray(effPrdsArray)==2){
 if(isnumber(trim(effPrdsArray[0])) and
isnumber(trim(effPrdsArray[1]))){
 startPrd = atoi(effPrdsArray[0]);
 endPrd = atoi(effPrdsArray[1]);
 if(contractPeriods >= startPrd and contractPeriods >= endPrd) {
 sbappend(returnStrBuilder, "|", lineDocNumber,
"~discountEffectivityPeriods_l~",discEffectivityPrdsStr);
 validDiscEntry = true;
 } elif(contractPeriods >= startPrd and contractPeriods < endPrd) {
 sbappend(returnStrBuilder, "|", lineDocNumber,
"~discountEffectivityPeriods_l~",sbtostring(stringbuilder(string(startPrd), ",",
string(contractPeriods))));
 validDiscEntry = true;
 }
 }
 }
 }

 if(validDiscEntry) {
 sbappend(returnStrBuilder, "|", lineDocNumber,
"~customDiscountType_l~",get(adjustment,"Discount_Type"));
 sbappend(returnStrBuilder, "|", lineDocNumber,
"~customDiscountValue_l~",get(adjustment,"Discount_Value"));
 sbappend(returnStrBuilder, "|", lineDocNumber,
"~discountEffectivityType_l~",discEffectivityType);
 }
 break;
 }
}
return sbtostring(returnStrBuilder);

Oracle CPQ with Subscription Management Integration Guide 100

• Add new commerce library function to calculate contract values
o Function name and variable name: Calculate Contract Values (calculateContractValues)
o Transaction Line input parameters:

 priceType_l
 discountAmount_l
 contractedPeriods_l
 discountEffectivityType_l
 discountEffectivityPeriods_l
 _document_number
 listAmount_l

o Add the library function code below.

returnStrBuilder = stringbuilder("");

totalContractDiscVal = 0.0;
totalContractListVal = 0.0;
totalContractValue = 0.0;

for line in transactionLine {
 discContractVal = 0.0;
 listContractVal = 0.0;
 netContractVal = 0.0;
 if(line.priceType_l == "One Time"){
 discContractVal = line.discountAmount_l;
 listContractVal = line.listAmount_l;
 netContractVal = listContractVal - discContractVal;
 } elif (line.priceType_l == "Recurring" or line.priceType_l == "Usage") {
 listContractVal = line.listAmount_l * line.contractedPeriods_l;
 if(line.discountEffectivityType_l == "ORA_ALL_TERM") {
 discContractVal = line.discountAmount_l * line.contractedPeriods_l;
 } elif((line.discountEffectivityType_l == "ORA_PERIODS_FROM_START_DT" or
line.discountEffectivityType_l == "ORA_PERIODS_BEFORE_END_DT") and
isnumber(line.discountEffectivityPeriods_l)) {
 discEffPrdInt = atoi(line.discountEffectivityPeriods_l);
 if(discEffPrdInt > line.contractedPeriods_l){
 discContractVal = line.discountAmount_l * line.contractedPeriods_l;
 } else {
 discContractVal = line.discountAmount_l * discEffPrdInt;
 }
 }elif(line.discountEffectivityType_l == "ORA_SPECIFIC_PERIODS"){
 strArray = split(line.discountEffectivityPeriods_l, ",");
 if(sizeofarray(strArray)==2){
 if(isnumber(strArray[0]) and isnumber(strArray[1])){
 startPrd = atoi(strArray[0]);
 endPrd = atoi(strArray[1]);
 bol = startPrd >= line.contractedPeriods_l;
 if(startPrd <= endPrd and startPrd > 0 and endPrd > 0 and startPrd
<= line.contractedPeriods_l and endPrd <= line.contractedPeriods_l){
 noOfPrds = endPrd - startPrd + 1;
 discContractVal = line.discountAmount_l * noOfPrds;
 }
 }
 }
 }
 netContractVal = listContractVal - discContractVal;
 }
 totalContractDiscVal = totalContractDiscVal + discContractVal;
 totalContractListVal = totalContractListVal + listContractVal;
 totalContractValue = totalContractValue + netContractVal;

Oracle CPQ with Subscription Management Integration Guide 101

 sbappend(returnStrBuilder, "|", line._document_number,
"~contractDiscount_l~",string(discContractVal));
 sbappend(returnStrBuilder, "|", line._document_number,
"~contractListValue_l~",string(listContractVal));
 sbappend(returnStrBuilder, "|", line._document_number,
"~contractValue_l~",string(netContractVal));
}
sbappend(returnStrBuilder, "|1", "~totalContractDiscount_t~",string(totalContractDiscVal));
sbappend(returnStrBuilder, "|1",
"~totalContractListValue_t~",string(totalContractListVal));
sbappend(returnStrBuilder, "|1", "~totalContractValue_t~",string(totalContractValue));
return sbtostring(returnStrBuilder);

o Call this function from the Save action Advanced Modify – Before Formulas > Define Advanced Modify –
Before Formulas.

Oracle CPQ with Subscription Management Integration Guide 102

APPENDIX O: CALCULATE PRICE API
This operation calculates the price of items using the Oracle CPQ pricing engine.

url: https://<hostname>.com/rest/v13/pricing/actions/calculatePrice

PAYLOAD ATTRIBUTE DATA TYPE COMMENTS

customerId string
Customer ID of the customer (account).

currencyCode
string

Code for the currency.

priceBookVarName

string

Variable name of the CPQ price book.

headerAttributeValues object
Values of pricing attributes at the header level.

oRCL_pRC_priceAsOfDate string Price as of date.

partNumber string Part Number of the CPQ product.

itemAttributeValues
object

Values of pricing attributes at the item level for
a specific item.

oRCL_pRC_partNumber
string

Part Number

oRCL_pRC_blockSize integer Block Size

oRCL_pRC_tierTo array Array of integer providing ‘Tier To’ numbers.

oRCL_pRC_tierFrom
array

Array of integer providing ‘Tier From’ numbers.

oRCL_pRC_tierListPrice array
Array of number providing list price for each
tier.

oRCL_pRC_quantity integer Quantity

oRCL_pRC_allowance integer
Allowance

oRCL_pRC_tierBlockSize array
Array of integer providing block sizes.

oRCL_pRC_externalParentKey string
External parent key

Oracle CPQ with Subscription Management Integration Guide 103

PAYLOAD ATTRIBUTE DATA TYPE COMMENTS

oRCL_pRC_usageValue number Usage value for products of type usage.

Use this attribute to map quantity in usage
rating for parts of type “Usage”.

oRCL_pRC_productType string
Product Type

oRCL_pRC_listPrice number
Product list price.

oRCL_pRC_contractStartDate string
Contract start date

Below is the sample payload:

{
 "customerId": "ATT",
 "currencyCode": "USD",
 "priceBookVarName": "_default_price_book",
 "headerAttributeValues": {
 "oRCL_pRC_priceAsOfDate": "2018-04-23"
 },
 "items": [
 {
 "itemIdentifier": "1",
 "partNumber": "SUV Charging Station use",
 "itemAttributeValues": {
 "chargeName": "Consumption Fee",
 "oRCL_pRC_contractStartDate": "2018-04-23",
 "oRCL_pRC_useUsageLock": true,
 "oRCL_pRC_usageValue": 10,
 "oRCL_pRC_tierBlockSize": [
 25,
 1
],
 "oRCL_pRC_tierFrom": [
 0,
 50
],
 "oRCL_pRC_tierTo": [
 51,
 0
],
 "oRCL_pRC_tierListPrice": [
 20,
 16
]
 }
 }
]
}

Oracle CPQ with Subscription Management Integration Guide 104

APPENDIX P: TROUBLESHOOTING
The troubleshooting information provided in this appendix contains workarounds for common scenarios administrators may
encounter with the Oracle CPQ - Subscription Management solution.

Manually Add BOM Parts to Oracle CPQ
If the BOM Item Tree Administration page shows some parts in red, this indicates that not all BOM parts from the BOM
package were added to the Oracle CPQ site. Administrators must manually add these parts to their Oracle CPQ site.

To manually add BOM parts to Oracle CPQ, perform the following steps:

1. Open the Admin Home page.

2. Select Parts under Products. The Product Administration page opens.

3. Click Add New Parts. The Part Editor opens.

4. Enter the part number shown in red, as it displays on the BOM Item Tree Administration page.

5. If the part corresponds to a subscription product, populate the Product Type with subscription in the Extended
Information section.

6. Click Add.

7. Repeat the above steps for all of the missing parts that display in red on the BOM Item Tree Administration page.

Warning Message with Initial Install of Subscription Management Package
When installing the Subscription Management package for the first time, and the OIC site does not have Subscription
Management-related integration installed yet, the migration succeeds and Commerce migration displays a warning message
similar to the following:

"WARNING
0 out of 2 Integrations were updated successfully.
Please update the process integrations to work properly"

This warning indicates the OIC flow doesn't exist yet, so migration could not update the OIC integration endpoint. To address
the situation, after importing OIC flows, go to the integration center to disable and re-enable the OIC integration, then
redeploy the Commerce process.

Resolve Issues with Submit Order Action
If installing the Subscription Ordering package results in issues with the Submit Order action, a workaround is available.

To resolve issues with the Create Subscription action, perform the following steps:

1. Open Oracle CPQ.

2. Select Integration Center under Integration Platform. The Integration Center opens.

3. Select the ICS integration from the left pane.

4. Unmark the Enable Integration check box to disable the integration.

5. Click Save.

6. Re-enable the ICS integration.

7. Click Save.

Oracle CPQ with Subscription Management Integration Guide 105

Enable the OSS Renew Event in the OIC Environment
When sites do not have valid certificates, the OSS Renew event does not work in OIC. Administrators can enable the Renew
event in OIC by beginning the OIC integration URLs with “https” and uploading the OIC certificates to Oracle CX Sales.

CONNECT WITH US

Call +1.800.ORACLE1 or visit oracle.com.
Outside North America, find your local office at oracle.com/contact.

 blogs.oracle.com facebook.com/oracle twitter.com/oracle

Copyright © 2019, 2023, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are
protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use,
copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or
by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors,
please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the
hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer software" pursuant to the
applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure,
modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the
hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights
are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or
intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use
this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are
trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are
trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products, and services from third
parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to
third-party content, products, and services unless otherwise set forth in an applicable agreement between you and Oracle. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party
content, products, or services, except as set forth in an applicable agreement between you and Oracle.

https://www.oracle.com/
https://www.oracle.com/corporate/contact/
https://blogs.oracle.com/
https://www.facebook.com/Oracle/
https://twitter.com/oracle

	Table of Contents
	Revision History
	Introduction
	Purpose
	Audience
	Prerequisites
	Acronym List

	Subscription Flows Overview
	Product Modeling Setup
	Oracle CPQ Package Installation and Setup
	Create OIC Integration
	Install Subscription Management Package
	Define Email Notifications for Subscription Renewals
	Subscription Pricing Setup

	OIC Integration Installation and Setup
	Import Packages and Integrations
	Configure Oracle CPQ and OSS Connections in OIC
	Configure Oracle CPQ and OSS Usage Rating Connections in OIC
	Register Third Party Application for Subscription in Fusion
	OIC Lookup Details
	OIC Mapping Details

	Oracle CPQ Field Setup
	Business Unit ID Field
	Subscription Profile ID Field
	Account Fields
	Billing Frequency – Price Periodicity Field
	Part Custom Fields
	Layout Fields

	Demo Product Setup
	Install the BOM Data Table Packages
	Install the Parts Package
	Install the Vision Vehicles SUV Demo Product Package
	Verify the Addition of All BOM Parts
	Deploy the Home Page

	Installed Oracle CPQ Elements
	Commerce Attributes
	Commerce Actions
	Library Functions
	Validation Rules
	Hiding Rules
	Usage Value Visibility
	Condition Summary

	Workflow Steps and Step Transitions
	Timer Configuration

	Oracle CPQ Account Integration
	Library Functions
	Manual Data Table Changes
	Add Template Dependencies to File Manager

	Oracle CPQ Account Lookup Integration
	Account REST API Services
	Reference Accounts Integration
	Account Search Data Tables

	Subscription Workbench
	Subscription Pricing Integration
	Enable Subscription Pricing
	Charges
	Discounts
	Pricing Engine Setup
	ORCL_PRC_LOOKUP

	Appendix A: Create Subscription Workflow
	Appendix B: Amend Subscription Workflow
	Appendix C: Add Amended Lines to Existing Subscription
	Appendix D: Renew Subscription Workflow
	Appendix E: Terminate Subscription Workflow
	Appendix F: Commerce Attributes
	Appendix G: Update Asset Timer BML
	Appendix H: Customer Details BML
	Appendix I: Open Transaction Line BML
	Appendix J: Save BML
	Appendix K: Payload Template File Content
	Appendix L: Library Function BML
	Appendix M: Subscription Pricing Utility BMLs
	Get Lookups (oRCL_pRC_getLookups) BML

	Appendix N: Implementation for Discount Effectivity Types
	Commerce Attributes
	Commerce Library Functions

	Appendix O: Calculate Price API
	Appendix P: Troubleshooting
	Manually Add BOM Parts to Oracle CPQ
	Warning Message with Initial Install of Subscription Management Package
	Resolve Issues with Submit Order Action
	Enable the OSS Renew Event in the OIC Environment

