CLOUD
READINESS

CPQ Cloud BOM Mapping

CPQ Cloud Release 18B

Implementation Guide

ORACLE

TABLE OF CONTENTS |

BOM Mapping Tables 8
2LV IR =Yoo T LT T Vi To T T - o 1SN 9
BOM EEM IMAPPING TADIE 1.eeeiiieiiiee ettt ettt e ettt e et e e e s bt e e e eabaeeeabeeeeabbeeeasbaeeassteeeessbeeeassaeaansseeeasssesesnbaeasnssaeeassseeeansaeesssneeananes 9
BOM Attribute DEfiNItION TABIE ..c.uiiiiiiiieiiie ittt sttt et e s e st e st e e bt e sat e s bt e sab e e b e e s et e ebeeeabeesbaeeabeessseenbeesabeenbeesabeenbaesnteen
BOM ALtribULe MapPing Tlceiiiiiiie ettt et e ettt s bt e e s bt e e e bt e e e sabeeesabtee e sbeeesasbeeesasteeesbeeesabbaeesasaeeennteeenans
BOM ALtribute Translation TABIEeoiuiiiieiiieieeee sttt st st e sttt e s et e s bt e sab e e bee s et e e sbeeeabeesheeesbeesabeenbeesateenbeesabeenbaesnsean

BOM Table Relationships

BOM Mapping Use Cases

BOM Mapping Functional Overview
Basic BOM Mapping Process Flows...............
Full-Service BOM Mapping Process Flows

BOM MAPPING CONFIGURATION RULES

BOM Item Configuration Rules

Configuration BOM IEEM IMAPPING ..eeruverieeeiteriee st ettt et e st st e st e bt esas e s bte e b e esbeesabeeaas e e st e sabesabeeease e beesabeesse e s st esanesabeesaseeneesnseensnenareennns
Reconfiguration BOM IEEIM IMIAPPINGveeiiuiieiiiiee et e ettt e eetteeeette e e eetteeeetaeeesabaeeeabeeeassasaeassseeeasbeseassaeesnssseearsseeeansasesasseeesnsbesessseeensseeeses
BOM Attribute Configuration Rules
BOM MapPPing RUIE EXECULIONceuiiiiieiiteitie st ettt ettt et eit et sat e et e e et esbee st e e bt e e bt e shtesabeeeas e e abee s et e e seeemseesaeeeabeeesseeaseesaneeaneesaseenneenanens
o =Tt VN D) TR RUP SRR
Mapping to Single Select Pick List Attributes ... 22
BOM IN ST AN CE .ttt ettt e et ettt e ettt e e e e e e e et e e e ettt et et e h e e et et e e h e e et a et e e e e e ane 23
Sales and Manufacturing BOMs 23
Capture a BOM Instance in Commerce Transactions 23
STIUCTUI ceeeeeeeee ettt ettt e e ettt e e e s ettt e e e e e s e sab e e e eeesesaas st aeaeea s assb e e eeeesassas b b aeeesesaasbs e e aeeesansasesaeeeeensassseeaeeesessnseaaaessennnssnaeaeeesssnsnnnnens
(O UE: 0111 4V OO PP SO P TP PUPPRRRUPPPUPUPPRRRPPPIIRE
Model Quantity and Pricing
Save a BOM Instance to a Quote 25
IMPLEMENTING BOM IMAPPING L.ttt ettt ettt ettt et ettt a e e e e ettt e e e e e et e et e et e ettt e e e n e enene e eaenanen 26
Capture BOM Definitions in CPQ BOM Data Tables 27
Activate BOM Tables 28
Map BOM Data Tables to CPQ BOM Platform Tables 28
Validate BOM Definitions 30
BOM With IMOTEIS @S CHIlArENeieiieeiieeie ettt ettt st et e st e et e e s teesaee e seesate e seesaseeseesaseenaeesnseesseeenseesnseenseesnseensnesnseensen 30
VAlIATION EFTOIS. . eiuttiiieiteeeite ettt et et et sb e e sttt et esub e s bt e s u bt e b e e s et e e s aeeeaseeshbeeabeeeab e e see e et e e st e emseesa b e e abeeeas e e seeeateenseeeabeenabeebeesabeennnesnnees 31
BOM Mapping With TWO VQIIAGLION EIFOIScccueeeieesieeeieesieeeesteesttesieesutesteestaesstesstessseesssasaseesssessseesaseessssssseesssessseessseesseessseenns 31
Validation Error in BOM Hierarchy With MOdels QS CRIlAIreN...............occuueeeeiiieeiiiieeeiie ettt e sttt e st ssiaa s iaaeessseessseaesases 33
Create BOM Mapping Configuration Rules 35
Define Simple Table-based CONfIGUIrAatioN RUIESc.coiiiiiuiiiiiesee sttt et e s te et e e teess e e eeessaeenseesseeenseesnseenseesseeenseeenseenseesnsens 36
Validate Table-based BOM MapPing RUIESuuiiiiiiiiiieeciee ettt ettt e sttt e e st ee e s bt eeesabeeessbseeesabaeeessbeeesnsssaeassaeessabaeasnssesansnes 37
Mapping to CoNfiGUIable Array ATLIIDULEScciciieeie ettt e ettt e st e e st e e teessee e seeesseesseesaseesseeanseesseeenseesnseeseesnseensneeseennen 38
BOM Item Mapping for CONfigurable Array ATEIIDULESceeueeeeeieeeeieeeeiieeestte e sttt e e ettt e e stte e s tteeessteesesteasstsaesssssessssseassssssasnans 38
BOM Attribute Mapping for CONfigurable ArrQy ATLIIDULEScueeeeeeeeeeieeeesieesteseeseesteesstesteessaesaseessssesseesssesssessseesssesssennns 40

Reconfiguration of CONfiguIable ArrQy ACLIIDULES.............ccceeeeeeeeeeieeeeeeeeeteste e st te et esate e teestesasteasseasseesaseaastessseesssasssessnseenseesaseenns 42

Define Advanced BML-based CONFIGUIation RUIESciiiiiiiiiiiie ettt et e e st e e st e e e e abeeeeabaeessabaeesasbeeesabaeesnsseeennns 43
From CONFIGUIAtioN t0 BOMcccuiiiiiiiiieiieeiee st eette et e s teeeteesseeesteesste e seeeste e seesnseasseeanseessaeeaseaanseenseesnseenseeanseesseeenseeanseenseesnseensenanseensen
Read and Update BOM [tEMS SAIMPIEceeeuveeeeiieeeeiieeeieeeeeeeetttaeste e e e ste e e aate e s etteeesaseeesassasaaassaaesasesessssasassssassssesesasssasssssaaanans
Add a BOM Item Sample.................ccu.....
Create a Root BOM from Scratch Sample
Delete @ BOM IEEIM SAMPIEccceveeeeeeeeeeee et et e ettt ettt e ettt e ettt e e et e e e st e e e aste e e e aste e e e st s e e sseaaaasseeeaasesessteasaasssaesasesesasssasassssaanans
Add a BOM Attribute Sample..................
Configurable Array Attributes Sample
Manufacturing BOM vs Sales BOM

JSON Path Functionsccceeeuu.
From BOM to Launch Configurations

Override Simple Configurable AttrIDULES SAMPIEcc.eeeeeeeieeeeee et ettt st e tte et esate et e s te et easte e s st e s st eassessssasssasssesssssesssasssenns 52
Override Configurable Array AttriDULES SAMPIEcccc.ueeeeeueeeeeeeeeeee et ee e ettt e ettt e e et e e e e te e e ettt e e s seeesesteasassaeeessesesasssasasssaanans 53
Referencing BOM Items 54
BOM Item Definition TrE@ REFEIENCESciiuieiiiecie ettt e e e s e et e e e e e e aeessee e seeeaseeseeeaseaseeenseessaeenseessseenseessseesseeenseennnennsens 54
BOM I£eM MaPPING TrEE REIEIENCESeiiiviiiiiiiieeiie et eet e ettt e e ettt e e e e e e e stb e e e eetbeeesbaeeaaabaeesabeeeassbeesnsseeesrsbeeesasaeessseeessbaeessaeeeassaeennes 54
BML Functions to Extract Sales and Manufacturing BOMs 55
Advanced Settings 55
DiSADIE AUTO UPAATES....uiiiiiiiiieiiee ettt ettt ettt e et e ettt e e e etaeeestbee e e tbeeeaataeeaasseeeeasbeeeassaee e sseeesssseseenseaeansseeessseeasnsasessseeeensseesansaeeensseeeaes 55
SEE ROW COUNT PO PAGE . ..iiiiiiiiiiiiiiiett ettt ettt e e et e et s ba e s e b b e e e s b et e s ab e e e e b b e e e s ab et e s abe e s s bbeeeaabaeesanbeeesabneeennnnee 55
APPENDIX A: BOM MAPPING SYSTEM ATTRIBUTES ..uuttiiiiiittieitt sttt e ettt e e e e e e e et e et e e et et s e e e et eteeneaetneaeeneanas 56
APPENDIX B: BOM ITEM DEFINITION TABLE SCHEM A ... ettt et e e e e e e e e e et e e e e e et et e e e e et eaaenaanas 57
Define Parts and Models as Child Item in the BOM Hierarchy 59
1V o Yo 1=y I - 1 T o o 4 =1 APPSO PPPTRUPPRN 59
"OPLION Class" BOM IEEIM TYPE ..uviiiiiiieiiiiee ettt e ettt e eeiteeeeteeeestteeesetbeeeeabaseaassaeeesseeeassaseasseeesrsbeseasssaeassseessseseanseseesseeeassesesnseeeansseeeanes 59
APPENDIX C: BOM ITEM MAPPING TABLE SCHEM A .. oottt et e e e e e et e et e e et et e e e e et eteen e e et raaanaanns 61
Multiple Attribute Mapping for BOM Mapping Items 62
Additional Configurable Attributes for BOM It€M MapPPiNgcccveriieriierieenieeiie et see sttt e sree st et e sreesseessneesseesbeesaneebeesaneenseesnnees 62
Configurable Attribute Columns in the BOM ltem Mapping Data Table.......cc.ooiiiiiiiiiie e et 63
View BOM Item Mapping AdMiNIStration PAGESceciueriuieriieriieiieeste et te st st st e stee s e e s e e bt e sate e bt e sase e seesaneessaesabeesanesaseesnseenseenanees 64
APPENDIX D: BOM ATTRIBUTE DEFINITION TABLE SCHEMA .. ettt ettt et e e et et s e e e e e e e e e et eaeeneanas 67
APPENDIX E: BOM ATTRIBUTE MAPPING TABLE SCHEM A L.ttt et e e et e e e e e e e e e eenenans 68
APPENDIX F: BOM ATTRIBUTE TRANSLATION TABLE SCHEMA ... oottt ettt e e e e e e e e e e e e eaeeneanas 70
APPENDIX G: BOM MAPPING CONFIGURABLE ARRAY ATTRIBUTE RESTRICTIONS ..uuitniiiiiiiii ittt et et ei e e e 71
APPENDIX H: BML FUNCTIONS FOR BOM IMAPPING ...t ttutititteii ettt e ettt et et e et e et e et et et e et s et e aae et ean e et eaneeaneanes 73
Get BOM BML Function 73
Save BOM BML Function 75
Get Configuration BOM BML Function 76
Save Configuration BOM BML Function 76
Convert a Hierarchical BOM into a Flattened BOM BML Function 77
Convert a Flattened BOM into a Hierarchical BOM BML Function 79
APPENDIX I: BML FUNCTIONS FOR SYSTEM CONFIGURATION ...ttt ettt ettt et et e et et et e et s et e e e et e e e et e aaeeaneenns 81
Get System Data BML Function 81
Get System Attributes Values BML Function 81
Get System Multiple Attribute Values BML Function 82
APPENDIX J: BOM JSON OBJECTS AND EXAMPLES .. ettt ettt e e e e et e e e e et e e s e et e e s e e e e e a e en e e e e eneeneanas 83
BOM Item JSON Object 83
BOM Item Attribute JSON Object 84
BOM Instance JSON Example 85
APPENDIX K: WEB SERVICES FOR BOM MAPPING ..uiuiiiiiiiit et et e e ettt et et et e ee et e eae e e e e ea s e et ea s e e e e aaeneeneaeaneneenaanns 86
Get Configuration Instance REST API 86

Configuration SOAP API Support for BOM Mapping 88

REVISION HISTORY

This document will continue to evolve as existing sections change and new information is added. All updates
appear in the following table:

Date What's Changed Notes

JUNE 2018 Initial Document Creation

INTRODUCTION

The new Bill of Materials (BOM) Mapping feature, introduced in CPQ Cloud 2016 R1, allows administrators to
import multi-level BOM product structures for use in CPQ Configuration, Commerce transactions, and
downstream integration of orders to an Enterprise Resource Planning (ERP) system. This data-driven solution
significantly reduces the amount of time needed to set up and maintain integrations of configured products with
ERP systems using new BOM tables and a new BOM Mapping rule type.

The BOM Mapping feature delivers the ability to:

e Capture BOM item definitions in CPQ Data Tables. Use existing Data Table migration or upload features
to import BOM item definitions from fulfillment systems.

e Map Configuration attributes to the resulting BOM items. Use simple Table-Based rules, advanced BML-
Based Rules, or both to accomplish BOM Mapping.

e Create and reconfigure transaction lines from Configuration selections using BOM Mapping rules.

e Generate a Sales or Manufacturing BOM for integration with downstream fulfillment systems.

IMPORTANT:
e BOM Mapping is used in Subscription Ordering and System Configuration, and is a prerequisite for using
those features.

e Implementing BOM Mapping requires advanced knowledge of CPQ Configuration and fulfillment system
configuration models.

PURPOSE

The CPQ Cloud BOM Mapping Implementation Guide describes BOM Mapping functionality and provides
instructions for implementing BOM Mapping.

PREREQUISITES

BOM Mapping Implementation is available on CPQ Cloud sites on 2016 R1, or later. Some features described in
this guide are only available in 18B, or later.

SCOPE
This implementation guide is divided into the following sections:

e BOM Mapping Overview - describes BOM Mapping functionality and BOM Mapping Use Cases.

e BOM Mapping Configuration Rules - explains BOM Mapping Configuration rules and provides

information about rule execution.

e BOM Instance - describes the BOM Instance and saving a BOM Instance to Commerce transactions and
quotes.

e Implementing BOM Mapping - provides instructions for implementing and validating BOM Mapping.

e Reference Information - describes BOM Mapping System Attributes, Table Schema, BML functions, and
JSON objects.

BOM MAPPING OVERVIEW

Fulfillment systems often maintain bills of material (BOMs) containing complex, multi-level part structures that
differ from the Configuration attributes used in CPQ Cloud when sales users configure products. CPQ Cloud
provides an external, sales-oriented, guided selling view of products that focuses on the customer’s needs and
perceived value for the product. In contrast, fulfillment and ERP systems provide an internal, manufacturing or
production oriented view of products. An example of this difference can be seen in eCommerce sites selling
computer laptops.

e |n CPQ Cloud, a customer may initially be asked, "What do you want to do with your laptop?" and
presented with different options (i.e. business, gaming, video, and media). The selected option will
result in the user being asked different additional questions concluding with a laptop configuration
bundle that will meet their needs.

e In a fulfillment system, the guide that is used to design and assemble a laptop typically contains
hundreds of parts and options that are crucial to assembling and sourcing the product components, but
are not meaningful to the customer.

The BOM Mapping feature provides a data-driven mechanism for mapping these differing product views.

As illustrated in the image below, BOM Mapping enables administrators to associate their fulfillment system
BOMs to an Oracle CPQ Cloud Configuration. The product structures are stored in BOM definition tables.
Administrators map tables and setup BOM Configuration rules to link the BOM definitions to the CPQ Cloud
Configuration attribute selections.

When a customer generates a quote, CPQ uses BOM Mapping rules to create a BOM instance. The BOM
instance represents a hierarchy of Commerce transaction lines, containing the BOM items and attributes
associated with Configuration selections. CPQ can then use the new getBOM function to send the Sales or
Manufacturing BOM to an ERP system for order fulfillment.

~ =
|II.' |I-l-
ERP I' Multi-level | Order
System | BOM
L L
" 5
1
1' _\
BOM Definition /o temand %y 4 BOM) " etsom
EP‘{I_ _ and Mapping —h-{: Attribute 'S-—h-{r Configuration 5_..{’: Function
Administration Tahlas %, Mapping Rulas I)
T H | T—

r 1

Commerce
CPQ configuration Transaction Lings
Sales Side ¥

BOM Mapping Overview

HIERARCHICAL RELATIONSHIPS IN BOM MAPPING

A central component of the BOM Mapping feature is the capture of BOM product structure hierarchies in CPQ
Cloud for reference by the BOM Mapping rules. The following example illustrates how these hierarchical parent-
child relationships are stored.

The BOM tree, shown in the following image, contains root part LP94777 (i.e. a CPQ model) and four parent
parts (LAPPRO1101, LAPPRO1109, BP3000, and EXT1000). Parent part BP3000 has three children (BP3025,
BP3050, and BP3075), and EXT1000 has two children (EXT2000 and EXT3000) and four grandchildren (EXT2001,
EXT2002, EXT3001, and EXT3002).

The CPQ BOM Data Table represents this tree using columns that store the item variable name, the parent item
variable name, and the root item variable name.

e For LAPPRO1101, the parent item and root item are both LP94777.
e For BP3025, the parent item is BP3000. The root item is LP94777.

e For EXT2001, the parent item is EXT2000. The root item is still LP94777.

IMPORTANT: Continue this pattern to support unlimited levels of parent-child relationships, allowing the
representation of very complex multi-level BOM structures.

BOM Tree BOM Item Definition Data Table
[LP2a777 [Laptop)] | Data | Sehems | Oracle_BomltemDef
LAPPRO1L0L (Intel Dual Core)
_[] & € “orabieHame Hame Poasent anabletame Footvariablelame
—[LAPPRO110G [AMD)] 1 @ LpPTT? Laptop ATO MODEL LP4TTT
— BP3000 [Battery Pack) | I 3 LAFPROMDN Intsl Dual Core LPS4TTT LPS4TTT
| BP3025 [2.5 ma Battery] | I @ LAPPRONDS Amd LPE4TTT LPS4TTT
3p3050 (5.0 m 8 . | 0| @ BP0 Battery Pack LPS4TTT LPS4TT?
_| .0 mi Battery]
37 €3 BRMZS 2.5 maA Battery BP3000 LPe4aTT?
BPSOTS (7.3 mA Battery] | 33| € BP0 5.0 ma Batlery BP3000 LPS4TTT
—| EXTLOOOD [External Drive) | 34 'B BEATE 7.5 mA Battery BF3000 LES4TTT
——| EXT2000 {5G External Drive] | 24) EXT1000 External Drive LPO4TTT LPo4TTT
_| EXT200L [5G External Drive 1 TE) | 4 @ ExXT2M 56 External Drive ExXT1000 LPa4aTTT
26 EXT2001 S External Drive 1 TB EXT2000 LPS4TTT
L[EXT2002 [SG External Drive 2 TB} | e =i BrEnE e 1 !
47 @ ExT202 5G External Drive 2 TB EXT2000 LPg4TTT
- 1
[EKTSDM (WD External Drivel] 25 | €3 EXT3000 WD External Drive EXT1000 LPS4TTT
H i
| EXT3001 [WD External Drive 1TE] | @ BTN WD External Drive 1 TB ExTa000 LPS4TTT
—{ EXT3002 [WD External Drive 2 TE|] 50 € ExT3002 WO External Drive 2 TB EXT3000 LPa47T?

BOM Tree Example

BOM MAPPING TABLES

CPQ Cloud provides five BOM Mapping platform tables to support the full BOM Mapping solution: BOM Item
Definition, BOM ltem Mapping, BOM Attribute Definition, BOM Attribute Mapping, and BOM Attribute
Translation. Many customers may only require one or two of these tables to implement their use cases.

The BOM Mapping platform tables contain the schema for associating BOM structures to Configuration attribute
values. Customer-specific mapping details are stored in CPQ Cloud Data Tables. The combination of these two
sets of tables enables administrators to create simple Table-Based Configuration rules to associate fulfillment
system BOMs, CPQ Configuration attributes, and Commerce transaction lines without the need for BML or other
logic.

Administrators upload or migrate BOM structures to CPQ Data Tables using CPQ Cloud’s standard importing
features. These Data Tables can then be linked to the corresponding BOM Mapping platform tables for use in
BOM Mapping rules, as shown in the illustration below.

CPQ BOM Data Tables CPQ BOM Platform Tables
Admin > Data Tables Admin > BOM > BOM Tables
[Default] Bills of Materials Tables

4 BOM Tables Active Name
[7] Oracle_BomitemDef » (¢| BOM Item Definition
] Oracle_BomltemMap #=pF============x- » ¢ BOM Item Mappi
] Oracle_BomAttrDef =F=——————————aad- » | BOM Attribute Definition
| Oracle_BomAttrMap =k===m=m--——e—aa- » ¥ BOM Attribute Mapping
] Oracle_BomAttr Tr < =m==m——m——————a » ¢] BOM Attribute Translation
Customer Data Mapped Data

BOM Data Table to BOM Platform Table Mapping

CPQ Cloud provides standard, downloadable Data Table definitions that can be used to create the
implementation-specific tables, which map automatically to the BOM Mapping platform tables. Alternatively,
customers can reuse existing Data Tables containing BOM structure details by mapping the columns in their
tables to the BOM Mapping platform tables. The new Edit BOM Table Definition page provides drop-down
menus for column mapping and Data Table definitions for download.

IMPORTANT: Administrators must activate the required BOM Mapping platform tables, and populate BOM
Mapping Data Tables prior to BOM Mapping.

BOM ITEM DEFINITION TABLE

The BOM Item Definition Table stores the BOM hierarchical relationships used in the fulfillment system, along
with item variable references, which recursively link child items to parent items. In addition to the hierarchical
information, BOM definition tables also store other information from the fulfillment BOM, such as:

e Fulfillment system IDs

e Default quantity

e Whether an item is optional, a sales item, or a manufacturing item

e BOM item effective dates

Refer to the BOM Item Definition Table Schema for an explanation of all table fields.

IMPORTANT: The BOM Item Definition table is the key component of BOM Mapping and is the only required
table for all use cases. For examples of when these tables are used, refer to BOM Mapping Use Cases.

BOM ITEM MAPPING TABLE

The BOM Item Mapping Table associates BOM items to Configuration attributes. Activating this table enables
simple Table-Based BOM Mapping Configuration rules. If this table is not active, administrators would use
advance BML-Based Rules to establish the association between BOM items and Configuration attributes. Error!
Reference source not found. shows the how the BOM Item Mapping Data Table “ConfigAttrVarName” and
“ConfigAttrValue” items relate to the Configuration attributes.

Oracle_BomitemMap Menu Attribute Editor: Processor
© scaron| | X T | (el
Main Information
Bomltem\/arNams Configattr/arMams [ConﬂgAﬂr’\falue “Name: Procassor
LPS47TT areYouLookingForAlaptopOrDesktop Laptop Variable Name: processar
LAPPRO1101 processor INTEL Data Type: Text
LAPPRO1108 processor AMD Image Menu: ® No ' Yes
Display Type: Single Select Menu v
Array Type: No
Display Crder: 2
Attribute Value Pricing: ® None ' Static Pricing
Edit HTML
Descriptian:
‘Menu Population TR
Displayed Text “ariable Name
Wenu Entry:
Intel Core IT [INTEL]
AMD Quad Core [AMD] o Add Entry
Delete
o Entry Manager

BOM Item Mapping Example

Refer to the BOM item Mapping Table Schema for an explanation of all table fields.

BOM ATTRIBUTE DEFINITION TABLE

The BOM Attribute Definition Table stores attribute definitions and attribute effective dates from the fulfillment

system. These attributes can define options, such as color or size. BOM item variable references associate the
fulfillment system attributes with the applicable BOM items. For Example: In the following image, BOM

attributes “BS03901” and “BSN3903” reference “BP3025” in the “BomItemVarName” field. This field references
the “VariableName” field in the BOM Item Definition table, which establishes the association of BOM attributes

to BOM items.
Data Oracle_BomlitemDef
& Deploy | | el @ Add Row | [¥ Delete
“ariableMame MName Parent\ariableMame RootvariableName
LP24777 Laptop ATO MODEL LPS47TT
BP3000 Battery Pack LP247Ty LPg477y
BP3025 2.5 m& Battery BP30DOD LPa47TT

Oracle_BomAdttrDef

" Deploy | | k=l @ addrow || ¥ Delete

“ariableMame Mame “alues Display‘alues Bomlitem/arName | RootBomltem\arkame

B503501 Battery Orientation H~A orizontal~\ertic al BP3025 LPS4TTT

BSM3083 Battery SerialNumber BP3025 LP24TTT

BOM Attribute Definition Example

Refer to the BOM Attribute Definition Table Schema for an explanation of all table fields.

10

BOM ATTRIBUTE MAPPING TABLE

The BOM Attribute Mapping Table stores associations between BOM attributes, Configuration attributes,
Commerce transaction line attributes, and quantity values. Setting up the BOM Attribute Mapping table enables
simple Table-based BOM Mapping Configuration rules to be used to associate BOM attributes to CPQ
Configuration and Commerce items.

The BOM Attribute Mapping table identifies describes BOM Attribute Mapping Target Types.

e BOM_ATTRIBUTE - Maps to a BOM attribute. Attributes that are not defined in the BOM Attribute
Definition are ad hoc BOM attributes.

e LINE_ATTRIBUTE - Maps to a Commerce line attribute. The line attribute must exist in the target
Commerce process.

o QUANTITY - Maps to the BOM line item quantity.
The Source Type field sets the source behavior, and there are three types:

e STATIC_ENTRY - The target is always set to the value in the source Static Entry.

e CONDITIONAL_STATIC_ENTRY - The target is set to the value in the Static Entry if the selected
Configuration attribute matches the Configuration attribute value.

e CONFIG_ATTRIBUTE - The target is set to the value of the selected Configuration attribute.
Refer to the image below for the following examples:

e The first line sets the “BSO3901” BOM attribute value to the value selected for the Configuration
“batteryOrientation” attribute.

e The second line entry sets the quantity to the value entered for the Configuration
“numberofBatteryPack” attribute.

e The third line sets the “LPSColorCode” BOM attribute value to “R”, if the selected Configuration
“sleeveColor” attribute value is “Red”.

Data Oracle_BomAttrMap
" Deploy € addrow | | ¥ Delete

TargetType Target'ariableMame: SourceType Static Entry ConfighttrarMame Configattrvalue

BOM_ATTRIBUTE BSO3501 CONFIG_ATTRIBUTE battery Orientation

QUANTITY CONFIG_ATTRIBUTE numberOfBattery Pac k

BOM_ATTRIBUTE LPSColorCode CONDITIOMAL_STATIC_ENTRY R sleeveColor Red

BOM Attribute Mapping Example

BEST PRACTICE RECOMMENDATION: Maintain a 1-to-1 mapping between a Target line or BOM Attribute value
and a Source Configuration attribute value.

Refer to the BOM Attribute Mapping Table Schema for an explanation of all table fields.

11

BOM ATTRIBUTE TRANSLATION TABLE

The BOM Attribute Translation Table associates translations for the applicable attributes. BOM attribute variable

references associate the fulfillment system translation with the applicable attributes.

IMPORTANT:
e Only attribute mappings with BOM_ATTRIBUTE as the target type are translated.

e All translations are included in JSON files, not just the user's preferred language.

As shown in the following image, the BOM Attribute Translation table provides three translations for BOM
Attribute variable “BS03901”: zh_CN — Chinese (Simplified), ja_JP - Japanese, and de — German.

Data Oracle_BomAttrDef
" Deploy | |zl © Add Row | | X Delete
| \ariableName MName “alues Display‘/alues Bomltem\arMame RootBomltemarMame
BS0O3501 Battery Orientation H~\f Horizontal-"ertic al BP3025 LP24TTT
BSM3083 Battery SeriaiMumber BP3025 LP24TTT
Data Oracle_BomAttr_Tr
+ Deploy | | s @ Add Row | | ¥ Delete
_Language BomAttrivariableMame Mame alues RootBomltemt/arMame
zh_GM BSO2801 sxEg H~ LPS4TTT
ja_JP BS03501 MuFU—mEF H~W LPo47T?
de BS03501 Batterie- Orientierung H~\ LPo47TY

BOM Attribute Translation Example

BEST PRACTICE RECOMMENDATION: When providing attribute translations, Single Select Menu and Multi-
Select Menu attributes should be used. Use of Text field attributes should be avoided.

Refer to the BOM Attribute Translation Table Schema for an explanation of all table fields.

12

BOM TABLE RELATIONSHIPS

BOM Mapping uses variable names as references to capture hierarchical relationships. BOM Mapping also uses
variable names to identify relationships between BOM tables. The following image illustrates these

relationships.

BOM ITEM DEFINITION

p Wariable Mame

Part Number

Parent Variable Name

Root Variable Mame

BOM ATTRIBUTE DEFINITION

p Variable Mame

WValues

BOM Item Variable Name

Root BOM Item Variable Name

BOM ATTRIBUTE TRANSLATION

}3 Wariable Mame

Language

BOM Attribute Variable Name

BOM ITEM MAP

}3 Variahle Name

B —

BOM Item Variable Name

Configuration Attribute Variable Name

Configuration Attribute Value

Parent BOM Map Variable Name

BOM ATTRIBUTE MAP

}B Variable Name

Target Type

Target Variable Name

Source Type

Static Entry

Values

Root BOM Item Variahle Name

Configuration Attribute Variable Name

Configuration Attribute Value

BOM Item Map Variable Name

Root BOM Map Variable Name

BOM Table Relationships

13

BOM MAPPING USE CASES

The versatility of the BOM Mapping feature allows administrators to choose among a variety of options for

implementation. Administrators must activate and map only those BOM Mapping tables needed to support their

requirements. The table below summarizes several approaches to leverage the BOM Mapping feature.

Usage Example

Basic BOM Integration

BOM Mapping
Integration

BOM Mapping with
Attributes Appended
in String Variables

BOM Mapping using
Attributes to Set
Transaction Line
Attributes

Full-Service BOM
Mapping without
Attribute Translations

Full-Service BOM
Mapping

Usage Explanation

Capture complex BOM structures and fulfillment fields.
Identify associations between BOM items and
Configuration attributes using only advanced BML-Based
Rules.

Integrate with fulfillment systems, such as Oracle EBS,
that do not use BOM item attributes. Identify BOM item
associations using simple Table-Based Rules. Advanced
BML-Based Rules are optional and can further refine
Configuration attributes.

In addition to the BOM Mapping integration, this use
case adds BOM attributes to BOM item lines. Identify
BOM item associations using simple Table-Based Rules,
and BOM attributes using advanced BML-Based Rules.

This scenario uses BOM Attribute Mapping to set the
values of Commerce line attributes, and does not use
the BOM Attribute Definition table. Identify BOM item
associations using simple Table-Based Rules. Advanced
BML-Based Rules are optional and can further refine
Configuration attributes.

Integrate with fulfillment systems, such as Siebel, that
support BOM item attributes. Identify BOM item and
attribute associations using simple Table-Based Rules.
Advanced BML-Based Rules are optional and can further
refine Configuration attributes.

Integrate with fulfillment systems that support BOM
item attributes with translations. Identify BOM item,
attribute, and attribute translation associations using
simple Table-Based Rules. Advanced BML-Based Rules
are optional and can further refine Configuration
attributes.

Active Tables

BOM Item Definition

BOM Item Definition
BOM Item Mapping

BOM ltem Definition
BOM Item Mapping
BOM Attribute Definition

BOM Item Definition
BOM Item Mapping
BOM Attribute Mapping

BOM Item Definition
BOM Item Mapping
BOM Attribute Mapping

BOM Item Definition

BOM Item Mapping

BOM Attribute Definition
BOM Attribute Mapping
BOM Attribute Translation

14

BOM MAPPING FUNCTIONAL OVERVIEW

BOM Mapping Configuration rules associate BOM items to Configuration attributes and Commerce lines. This

section explains sales configuration and reconfiguration process flows with BOM Mapping. Examples for basic

and full service implementations are addressed.

BASIC BOM MAPPING PROCESS FLOWS

The following examples cover the process flows for a basic BOM Mapping implementation, which only uses the
BOM Definition Table. The following description explains the configuration process flow.

1.
2.

Configuration rules actuate when a user saves a sales configuration to a quote.

The advanced BML-based BOM Configuration Rule references the BOM Item Definition table to

accomplish the following tasks:

e Record BOM hierarchical data (parent-child relationships)

e |dentify BOM item quantity

The configuration, BOM part numbers, quantities, and parent-child relationships are saved to Commerce

Transaction Lines.

Administrators use the new getBOM BML function to extract the Sales or Manufacturing BOM. These
BOM instances include BOM item variable names and BOM fulfillment data (BOM item ID, type, etc.).

The BOM, including order information, is sent to the Fulfillment System, to complete the order.

Configuration

CcrQ Save to Quote

[

Recommendation Rules

BOM Configuration Rules

Recommended Item Rules

Commerce
Transaction
Lines

—

getBOM

Commerce BOM
Item Instance

BOM
Item Definition

Advanced BML-based
BOM Configuration Rule

(Configuration to BOM)

! » Hierarchical Data
| * Fulfillment Data

|+ Default Quantity

o
f— A

Fulfillment System

~—

Basic BOM Mapping Configuration Process Flow

The following example covers the reconfiguration process flow for a basic BOM mapping implementation.

1.
2.

Configuration rules actuate when a user reconfigures a transaction line.

The CPQ Configuration attribute values are set to reflect the transaction line. Advanced BML-based
Configuration Rules validate sales items still exist in the BOM Item Definition table. Invalid BOM items

are deleted.

After reconfiguration, the order follows the Configuration Process.

15

Commerlte I;:Dmn:lerce Canfiguration
Transaction econtigure BOM Configuration Rules i ,CPQ . i Process
Lines Action Configuration
Advanced BML-based : Validate sales items exist
BOM . BOM Configuration Rule ! in BOM Item Definition.
Item Definition [BOM to Launch Configuration) : Delete invalid items.

Basic BOM Mapping Reconfiguration Process Flow

FULL-SERVICE BOM MAPPING PROCESS FLOWS

The next two examples cover full-service BOM Mapping implementations. Full-service implementations use all
BOM mapping tables. The first example covers the configuration process flow for full-service BOM mapping.

1. Configuration rules actuate when a user reconfigures a sales quote.

IMPORTANT: Using BOM mapping tables enables the simple table-based configuration rule.

2. The simple table-based BOM Configuration Rule references the BOM item definition. Administrators can
also use advanced BML-based to further refine the input to configuration. BOM Mapping configuration
rules accomplish the following tasks:

e Record BOM hierarchical data (parent-child relationships)
e |dentify BOM item quantity

3. The configuration, BOM part numbers, quantities, and parent-child relationships are saved to Commerce
Transaction Lines.

4. Administrators use the new getBOM BML function to extract the Sales or Manufacturing BOM. These
BOM instances include BOM item variable names and BOM fulfillment data (BOM item ID, type, etc.).

5. The BOM, including order information, is sent to the Fulfillment System, to complete the order.

16

BOM
Ite"_-' BOM Configuration Rules
Mapping Simple Table-based
BOM Item imple Table-base:
Mapping Tree + Advanced BML-based
B(_]M (Configuration to BONM)
Attribute
Mapping
Recommendation Rules
Save to . .
crQ Quote —*| BOM Configuration Rules
Configuration
Recommended Item Rules
E * Hierarchical data i BOM BOM Item
[Fulfillment data | Item Definition
| » Default quantity i Definition Tree
E * BOM attributes ! BOM
! * Saved as children | Artribute
! of BOM items. Definition
| = BOM attributes E
| translations ! BOM
| = Saved as children ! Attribute
I of BOM attributes. | Translation

Commerce
Transaction
Lines

zetBOM

Commerce
BOM Item
Instance

Ty
—

Fulfillment

System

Full-Service BOM Mapping Configuration Process Flow

The same reversed sequence described for the basic implementation, will occur for the full-service

implementation. This example covers the reconfiguration process flow for a full-service BOM mapping

implementation.

1. Configuration rules actuate when a user reconfigures a sales quote.

2. The CPQ Configuration attribute values are set to reflect the transaction line. Simple table-based

Configuration Rules reference the BOM Item Tree table to validate sales items still exist in the BOM Item

Definition table. Invalid BOM items are deleted.

3. After reconfiguration, the order follows the Configuration Process.

17

Configuration

BOM
Item
Mapping BOM Configuration Rules
. BOM Item #+ Simple Table-based
Mapping Tree * Advanced BML-based
BOM {BOM to Launch Configuration)
Attribute
Mapping
Commerce Commerce
Transaction Reconlﬁgure BOM Configuration Rules CPQ
Lines Action Configuration
|]
| Validate sales items exist :
BOM BOM .It.em ! in BOM Item Definition. '
Item Definition | !
Definition Tree | Delete invalid items. |
BOM
Attribute
Definition
BOM
Attribute
Translation

Process

Full-Service Reconfiguration Process Flow

18

BOM MAPPING CONFIGURATION RULES

BOM Mapping Configuration rules associate BOM items and attributes to CPQ Configuration attributes and
Commerce line items. Simple Table-based Configuration rules are defined using the BOM Item Mapping Data
Table and optionally the BOM Attribute Mapping Data Table. Advanced BML-based rules can then be used in
addition to the Table-based rules to refine the mapping results. In rare cases, BOM Item Mapping tables are not
used at all, and administrators use advanced BML-based Rules to establish Configuration and Commerce
association with BOM items. If BOM Mapping tables are not used, administrators can use advance BML-based
Rules to establish Configuration and Commerce association. Advanced BML-based rules can be used in addition
to the Table-based rules to refine the mapping results.

BOM ITEM CONFIGURATION RULES

CONFIGURATION BOM ITEM MAPPING

BOM item mapping associates BOM items to Configuration attributes. During Configuration, whenever the
configuration state is changed, the BOM Mapping Configuration rules are invoked to map Configuration
attributes to BOM items. The following image illustrates BOM item and Configuration attribute associations. For
Example: When the "areYoulLookingForALaptopOrDesktop" Configuration attribute is "Laptop", the root BOM
item with the Variable Name "LP94777" is created.

At the next child level, if the "processor" configuration attribute is "INTEL", the child BOM item "LAPPRO1101" is
created. If it is "AMD", the child BOM item "LAPPR0O1109" is created. The child BOM item is created under the
root BOM item. Their hierarchical relationship is defined in the BOM Item Definition table. A child BOM item is
created only if its parent BOM item is created.

{

"partNumber": "LES4777", BOM Item Mapping Administration List Rule-laptopBOM
"quantity": 1, i]
"explodedQuantity”: 1, BOM Item Variable Name Configurable Attribute Configurable Attribute Value
"rariableNams": "LP34777", arevouLockingForalaptopOrDesktop Laptop
"definition": { LAPPRO11DM processor INTEL

"SegquenceNum": 1000, processor AMD

"ItemId": "1000",

"ItemType": "Standard Item",

"Opticnal™: "H"
HE
"shildren™: [

{
"partNumber": "DRCL10Z",

"quantity": 1,
"explodedQuantity™: 1
"rariakbleName=": "L&ZPPRO110S",
"definition": {
"SequenceNum": 1003,

"ItemId": "113a",
"ItemType": "Standard Item",
"Opticnal™: "N"

JSON Representation of a BOM Item

For more information about BOM item instances, refer to the BOM Instances section. The BOM Item Definition
provides the default quantity in the BOM instance. The definition node also comes from BOM Item Definition.

19

Iltems in the BOM instance, created by BOM item mapping, must exist in the BOM Item Definition. The hierarchy
of BOM item mapping is entirely based on the BOM Item Definition. As a result, a child BOM item is generated
only if its parent BOM item is included.

RECONFIGURATION BOM ITEM MAPPING

During reconfiguration, the Launch Configuration attributes are mapped from the BOM item instance. Refer to
the JSON Representation of a BOM Item image for the following example. If “LP94777” is the BOM instance root
BOM item, when the Configuration session is launched, the "areYoulLookingForALaptopOrDesktop”
Configuration attribute is set to "Laptop". Similarly, if the child BOM item "LAPPRO1109" exists, the "processor"
Configuration attribute is set to "AMD".

If the BOM Mapping rule values conflict with sales side data, Configuration rules attempt to set the same
Configuration attribute with different values. If the attribute is not a Multi Select Menu, a runtime error occurs.

It is considered a match when the sales side Configuration attribute value is "equal”, or "the same as" the
mapped value. However, if the Configuration attribute is a Multi Select Menu, the comparison operator is
inclusively "contains". In other words, as long as the Multi Select Menu attribute contains the value required by
the rule, it is considered a match.

BEST PRACTICE RECOMMENDATION: Maintain a 1-to-1 mapping between a BOM item and a Configuration
attribute value.

The table-based reverse mapping sets the Configuration attributes based on which BOM items and BOM
attributes exist in the BOM instance. It does not attempt to modify the Configuration attributes based on which
BOM items or BOM attributes are absent in the BOM instance. Refer the "LAPPRO1109" BOM item example
above for the following description. If the BOM instance contains "LAPPRO1109", the "processor" Configuration
attribute is set to "AMD" accordingly. If the BOM instance does not contain "LAPPRO1109", the table-based
reverse mapping does not attempt to set the "processor" attribute, even if it happens to be "AMD". If the
"processor" attribute must be set to a specific value when "LAPPRO1109" is not present, advanced BML can be
used to set the value, refer to From BOM Launch Configurations for more information.

When a Commerce Model line that contains a captured Sales BOM is reconfigured, mapping from BOM to
Launch Configuration invokes the following actions:

1. The Configuration is restored to the values saved on the Model line
2. The Sales BOM items are validated against the current BOM ltem Definition. Invalid items are removed.

3. If Table-based BOM Mapping rules exist, they are invoked first, to map the BOM instance values to the
Configuration attributes.

4. If "From BOM to Configuration” advanced BML-based BOM mapping rules that are defined, they are
invoked next, using the defined order.

Special attention should be paid to selector configuration attributes. If the selector (search input) value needs to
be overridden via BOM Mapping, the Configuration attribute must be set to auto-locked. This is consistent with
the current Configuration behavior: the selector recommended value is preferred, unless the attribute is auto-
locked during reconfiguration. The auto-lock must be defined in the attribute, instead of being dynamically set
by a Recommendation rule.

20

BOM ATTRIBUTE CONFIGURATION RULES

Similar to BOM item mapping, the BOM attribute mapping is also bidirectional. From Configuration to BOM, the
target values are set based on the source types and values. From BOM to Launch Configuration, the initial
Configuration attribute values are set from source to target.

BOM attribute mapping is used to set a BOM attribute, the quantity of the BOM item, or a Commerce line
attribute. Under each BOM item, administrators can define many BOM attributes using attribute mapping.

Conflicting end values occur if multiple BOM attribute mappings attempt to set the same attribute to different
values. Similar results can occur From BOM to Launch Configuration, if Configuration rules attempt to set the
same Configuration attribute with different values. These events will generate runtime errors.

The BOM Attribute Mapping table identifies the attribute Target and Source. In the following JSON sample, the
“attributes” node stores BOM attribute Target Types, and the “fields” node stores Line attribute Target Types.

"partNumber": "BP3025",
"quantity": 1,
"variableName": "BP3025",
"definition": {

"SequenceNum": 2020,
"ItemId": "3025",

"ItemType": "Standard Item",
"Optional": "N"

b

"attributes": {
"BSO3901": {"value": "H~V"},
"BSN3095": {"value": ""}

bo

"fields" : {

"lineActionCode", "Add"
b
"explodedQuantity": 1,
"children": []

BOM MAPPING RULE EXECUTION

During Configuration, BOM Mapping rules are invoked when changes to Configuration attribute values are
saved. BOM Mapping rules run after Recommendation rules, but before Recommended Item rules. If the
Configuration contains multiple nodes, BOM Mapping rules are only run in the last node, similar to

Recommended Item rules.

21

BOM Mapping rules are invoked as follows:

o Simple Table-based BOM Mapping rules — During set up, a Configuration Model can be associated with
different BOMs using multiple BOM Mapping rules. However, on the sales side, only one Table-based
BOM Mapping rule should apply. In other words, a given Configuration state on the sales side can only
be associated with one Sales BOM.

e Advanced BML-based BOM Mapping rules — BML-based rules are actuated in order, if they are defined.
This allows administrators to revise the BOM instance using BML scripts. The BML revised result is an
updated JSON BOM instance, which must conform the BOM Item Definition.

During Configuration, administrators can reference the current BOM instance by using the system Configuration
attribute _bm bom instance. If the BOM instance is not null, it can be viewed in the Pipeline Viewer. The
Pipeline Viewer displays which Configuration attributes and BOM Mapping rules were used to create the BOM
instance.

If the BOM instance is not null, pricing of the BOM parts occurs. If the price is not zero, it is displayed in the
Configuration Pricing section.

IMPORTANT: The root BOM item should not have an assigned price. If the root Part Number has a defined
price, BOM pricing ignores the defined price. The BOM price displayed during Configuration is the unit price,
while the pricing displayed in quotes is the total using an exploded quantity.

EFFECTIVE DATES

By default, BOM Mapping is executed at the current time. When the BOM is stored into a quote, the effective
date of the BOM Mapping can be set on the line attribute “Line BOM Effective Date” field of the root BOM item
line, (i.e. the Model line). This effective date is honored when:

e A Sales BOM that is extracted from a quote is validated
e A BOM instance is reconfigured

In the latter case, the effective date only applies to BOM Mapping Configuration rules. Other Configuration rules
do not honor the BOM Mapping effective date.

MAPPING TO SINGLE SELECT PICK LIST ATTRIBUTES

Beginning in Release 18B, CPQ Cloud provides BOM Mapping support for Single Select Pick Lists, which are also
known as Dynamic Menus. When a Single Select Pick List option is selected, the applicable BOM Mapping rules
are invoked to add parts to a Transaction based on the Single Select Pick List selection. The Single Select Pick List
attribute type can be created in Configuration for Text, Integer, and Float data types.

IMPORTANT: To ensure proper operation of the BOM Mapping rules, the variable names referenced for the

Single Select Pick List options must match the Configurable Attribute variable names and values in the BOM Item
Mapping table.

22

BOM INSTANCE

A Configuration BOM instance is represented by a JSON object. This BOM instance is referenced during
reconfiguration and is used to generate Sales BOMs and Manufacturing BOMs, which can be sent to a back-end
system for order fulfillment.

SALES AND MANUFACTURING BOMS

BOM items can be classified as sales items, manufacturing items or both. These items are defined in the BOM
Item Definition table.

e CPQuses sales items to create a BOM instance during Configuration, sales items are used for quotes,
and the BOM instance used during reconfiguration contains sales items. In other words, only sales items
are used inside CPQ.

IMPORTANT: Sales Items must have corresponding Part Numbers defined in the CPQ Parts Database.
e Manufacturing items are only used when CPQ submits a Manufacturing BOM to a back-end Fulfillment
system. Administrators use the BML getbom function to create a Manufacturing BOM from the saved

Configuration in a quote.

CAPTURE A BOM INSTANCE IN COMMERCE TRANSACTIONS

The BOM instance is stored in a quote when the end user saves the Configuration to a quote.

Structure

The root BOM item is equivalent to a Model line, and it will be processed as Model line within CPQ. Model lines
do not use part fields; therefore, the root BOM item Part Number is stored in the “Line BOM Part Number” field.
The other part fields of the root BOM item are not saved into the Model line. As a result, part-based pricing is
not executed on the root BOM item. Customers should not define part pricing for the root BOM item.

All child BOM items are stored as child Part lines of the Model line. All child and grandchild BOM items are
stored as the direct children of the Model line. Hierarchical relationships are stored the “Line BOM Parent ID”
field.

When a BOM tree is saved into a quote, the item Variable Names are not stored. During reconfiguration, the
getBOM BML function performs the following actions:

e Extracts the Sales BOM from the saved BOM instance
e Validates items against the current BOM Item Definition

e Resolves the BOM item Variable Names

23

CPQ uses the following system fields to capture a BOM instance into a quote:

Name Variable Name Type
Line Item _line bom id Text
BOM ID
Line BOM _line bom parent id Text
Parent ID
Part Number | _part number Text
Line BOM _line bom part number Text
Part Number
Line tem BOM | line bom attributes Text
Attributes Area
Quantity _price_quantity Integer
Line BOM Item |_line_bom_item quantity | Integer
Quantity
Line BOM Level _line bom level Integer
Line BOM _line bom effective date| Date
Effective Date
Is Line Item _1s line item mandatory |Boolean

Mandatory?

Description / Notes

The BOM item instance id.
When ABO is enabled, this field is used to store the asset key.

The parent BOM item instance id.

The part number of the BOM item
Used for child BOM items, not applicable to root BOM items.
The part number of the root BOM item.

Stores the root BOM Item Part Number in the Model line.
Applicable to the root BOM item only.

BOM attributes, stored as a JSON string.

Refer to BOM Attributes for the format of the JSON object.
Quantity of the line item.

The exploded line quantity.

The BOM item line quantity. This is the unexploded line
guantity, whereas _price_quantity stores the exploded quantity.

BOM Item line quantity. This is the unexploded line quantity.
The _price_quantity stores the exploded, effective quantity of
the line.

The BOM item depth (level) in the quote.

Add a new system attribute _line_bom_level, of integer type.
e The value is “0” for the root BOM item, i.e. the Model line.
e The value is “1” for first level child BOM items
o The value is “2” for second level child BOM items, etc.

The value is empty for non-BOM quote lines
BOM Effective Date. If null, the current time is used.

Stores the system attribute in the Model line Effective Date to
enforce date effectivity in all BOM mappings.

Enforces date effectivity data in the BOM Item Definition and
BOM Item Mapping Data Tables. Enforced at runtime for Model
to BOM, Get BOM from quote, and BOM to Configuration.

Used to identify if the line item is a mandatory part.

True if the BOM item is not optional. The default logic can
be overridden by BOM attribute mapping.

24

Quantity

BOM Mapping makes it possible to set the Model line “Price Quantity" to numbers greater than one, by using
“Price Quantity” and “Line BOM Item Quantity” fields. The child “Line BOM Quantity” value is multiplied by the
parent “Price Quantity” value, and the sum is stored in the child “Price Quantity” field.

e Price Quantity - the effective or exploded quantity, i.e. multiplied by the parent Price Quantity.
This field is used to calculate pricing.

e Line BOM ltem Quantity - the BOM item quantity before explosion.

For example: If the BOM Model line “Line BOM Quantity” is 2, and the child line “Line BOM Quantity” is 3; the BOM
Model line “Price Quantity” will be 2, and the child line “Price Quantity” will be 6 (3*2).

Model Quantity and Pricing

Since the Model line quantity can be more than one, the total price of the quote uses this quantity when
calculating the Model line subtotal. This is different from the standard Configuration total price, where the unit
price assumes the Model quantity is one.

SAVE A BOM INSTANCE TO A QUOTE

When the Configuration is saved to a quote, the BOM instance is saved as item lines in the quote. Before the
BOM instance is saved to a quote, any defined BOM attributes and BOM attribute translations are added to the
BOM instance.

If a BOM item instance contains a "fields" node, it is used to populate the Commerce line attribute. BOM
attribute mapping creates a "fields" node when an attribute Target is Line Attribute. Administrators can also use
advanced BML-based rules to populate Commerce lines.

When quote line items are initially created, defined line attribute default values take precedence over BOM
Mapping attempts to set the line attribute. This is consistent with the current Commerce behavior.

The Configuration date attribute does not have a “time” component. If a Configuration date attribute is mapped
to a Commerce date attribute that includes time, the time portion of the Configuration date attribute is set to
00:00 AM on the date in the default time zone, set up on the CPQ server.

25

IMPLEMENTING BOM MAPPING

The following items outline setup activities:

Capture BOM Definitions in CPQ Data Tables

Activate BOM Mapping Tables

Map BOM Data Tables to CPQ BOM Platform Tables

Validate the BOM Item Definition Tree

Define BOM Mapping Configuration Rules

Validate Table-based Configuration Rules

Referencing BOM ltems

BML Functions to Extract Sales and Manufacturing BOMs

Advanced Settings (Disable Rule Updates and Customize Page Size)

26

CAPTURE BOM DEFINITIONS IN CPQ BOM DATA TABLES

Administrators perform the following steps to set up BOM Mapping Data Tables.

1. Identify BOM Mapping tables needed to support customer requirements, for more information refer to
the BOM Mapping Use Cases section.

2. Populate required Data Tables. CPQ Cloud provides sample table definitions for each BOM table, which
define the required schema. Perform the following steps to acquire sample:

a. Click Admin to navigate to the Admin Home page.
b. Click BOM in the Products section.

c. Click BOM Tables in the BOM Declaration section.
d. Click the Name link for the appropriate BOM Table.

e. Click the Download Sample link.

Edit BOM Table Definition
BOM Table Definition

Mame: BOM Item Definition
Table Name: Cracle_BomltemDef

Download BOM Table Schema

IMPORTANT: Use the CPQ database date format for Data Table “Effective From” and “Effective To” fields:
¢ Format: yyyy-mm-dd hh:mm:ss
e Example: 2015-09-02 23:58:15
Alternatively, the following ISO date formats can be used:
* YYYY-MM-DD
* YYYY-MM-DDThh:mm:ss
* YYYY-MM-DDThh:mm:ssTZD

. If you open a Data Table CSV file in Excel, Excel may change the date to the “m/d/yyyy hh:mm” format.
For example: "9/1/2015 23:58". Verify the date is formatted, as specified above or parsing errors will occur.

For more information on the next two steps, refer to the CPQ Cloud Online Help “Data Table” and
“Bulk Upload” topics.

1. Upload the required Data Tables.

2. Deploy the Data Tables.

IMPORTANT: Setting up BOM tables is not part of migration. Administrators should initialize BOM tables in the
target environment, before migrating BOM data from the source to the target environment.

Administrators must set up the required BOM tables. This process is a one-time event. Administrators can
modify the setup, if business needs are changed. Setting up BOM tables consists of activation and mapping.

27

ACTIVATE BOM TABLES

Activation enables BOM tables used for BOM Mapping.

1. Navigate to Admin > BOM > BOM Tables.

The Bills of Materials Tables page appears.

Bills of Materials Tables

Bills of Materials Tables

Save Cancel

Active MName Mapping Status Description
L BOM Item Definition Incomplete This table stores the definitions of bills of materials imported from ERP systems.
L BOM Item Mapping Incomplete This table stores the mapping between configuration attributes and BOM items.
L BOM Attribute Definiticn Incomplete This table stores the attribute definitions of BOM item definitions.
Ld Incomplets This table stores the mapping between configuration attributes and BOM attributes or commerce line attributes.
L Incomplete This table stores the translations of BOM attribute definitions.

Bills of Materials Tables — Incomplete Mapping

IMPORTANT: The BOM Item Definition table is the key component of BOM Mapping and is the only required
table for all use cases. For examples of when these tables are used, refer to BOM Mapping Use Cases.

2. Select the appropriate Active checkbox to activate the required tables.

3. Click Save.

MAP BOM DATA TABLES TO CPQ BOM PLATFORM TABLES

The mapping status of the BOM table displays “Incomplete” for the first activation. After mapping, the status
changes to “Complete”.

1. Navigate to Admin > BOM > BOM Tables.
2. Select the Name link of the appropriate BOM table.

3. Select the appropriate table in the Table Name drop-down menu.

If the selected Data Table column names and data types match the default, the column mapping is
automatic. If the column names and data types do not match, map the columns manually. Select the
appropriate columns from the Column Mapping drop-down menus.

4. Click Save, when column mapping is complete.

28

BOM Table Definition

Name:
Table Name:
Download Sample

Column Name
“Jariable Name

Sequence Number

Item D

Mame String
ltem Type String
Part Mumber String
Default Quanti Float
Opticnal String
Sales ltem String
Parent Variaple Mame String
RootVariabfe Name String
Effective Frpm String
Effective Tt String
Manufactuling ltem String

Edit EOM Table Definition

EONM Item Definition

Cracle_BomltemDef v

Description

The natural key column of this table.

BOM item sequence

BOM item 1D

Display name

BOM item type

The part number of the BOM item

The default guantity of the BOM item

Whether the BOM item is optional. Valid values: ¥ or M.
Whether the item is a sales ftem. Valid values: ¥ or N.
The variable name of the hierarchical parent BOM item
The variable name of the root BOM item

The effective from date

The effective to date

Whether the item is & manufacturing item or not. Valid values: ¥ or N.

Schema

Column Mapping

“ariableName v
SequenceMNum v
Itemlid v
MName v
IltemType v
|DefautQuantty v |
Optional v
Salesltem v

ParentvariableName v
RootvariableName M

EffectiveFrom A
EffectiveTo v
Manufacturingltem v

Data Table
Column
Name

Oracle_BomltemDef

Filter: i &l | @ add Column |
© add | |# File - || Search # €3 Index Key Name Type Date Added Date Modified
- [[Default] 116G 4 \riableName String 07012016 9:37 AM 08/15/2016 2:26 PM
4 | | BOM-Mapping 2 Q Sequent eNum Integer O07/20v2016 9:37 AM 07/20/2016 9:37 AM
(] Oracle_Bomattr_Tr 19 ltemld O7/20/2016 8:37 AM 07/20/2016 8:37 AM
(] Oracle_BomattrDef 19 Mame O7/202016 83T AM OTI20/2016 8:37 AM
[Oracle_BomaAttrMap
5 Q ltemType O7/20/2016 9:37 AM O7/20/2016 9:27 AM
Data Table [oracle_BomItemDef 5 I|
B Partumib St O7/20/2016 9:37 AM 07/20/2016 9:37 AM
N m (] oracle_BomItemMap arlumber L |
a e T 0 DefaultQuantity Float O7/2002016 9:37 AM O7/20/2016 9:37 &AM
8 0 Opticnal String O7/2002016 9:37 AM O7/20/2016 9:37 &AM
9 0 Salesltem String O7/2002016 9:37 AM O7/20/2016 9:37 &AM
10 0 ti Parent\ariableMame String O7/2002016 9:37 AM 08/15/2016 2:26 PM
1 0 Root'ariableMame String O7/2002016 9:37 AM 08/15/2016 2:26 PM
12 0 Effec tiveFrom String O7/2002016 9:37 AM O7/20/2016 9:37 &AM
13 0 EffectiveTo String O7/20/2016 5:37 AM O7/20/2018 8:37 AM
4 o Manufac turingltem String O7/20/2016 9:37 AM 07/20/2018 9:37 AM

BOM Item Definition Data Table Mapping

After successful completion of a BOM table mapping, the Edit BOM Table Definition page displays “Mapping

saved successfully”, and the Mapping Status updates to “Complete” on the Bill of Materials page.

Mapping saved successfully

BOM Table Definition

Mame:
Table Name:

Edit EOM Table Definition

BOM ltem Definiticn
Oracle_BomltemDef

Bills of Materials Tables

Bills of Materials Tables
Active Name

Mapping Status

| # BOM item Definition Complete |
o BOM Item Mapping Complete
o BOM Attribute Definition Complete
o BOM Attribute Mapping Complete
o BOM Attribute Translation Complete

Successful BOM Table Set Up

29

VALIDATE BOM DEFINITIONS

After mapping BOM Data Tables to CPQ platform BOM Tables, administrators should validate the BOM Item
Tree, which contains BOM items, BOM item attributes, and BOM attribute translations.

Perform the following steps to validate the BOM Item Tree.

1. Navigate to Admin > BOM > BOM Root Items List.

BOM Root ltems Administration List

Variable Name MName Part Number ftem ID
Laptop ATO MODEL LPoa777 1000
Custom Sentinel Deskiop Ds827iy 2000

BOM Root Items Administration List Page
2. Select the appropriate Variable Name link.

The BOM Item Tree Administration page appears.

BOM with Models as Children

Beginning in 2017 R1, a BOM can have models as children of other models. Companies can use this feature to
offer packaged bundles containing models from separate product families. As in prior releases, the BOM ltem
Tree Administration page displays the expanded hierarchy and BOM definition information for a root BOM item,
child items, and grandchild items. The BOM Item Tree Administration page also displays root models and other
models as child items. Each model can have its own individual parts and models.

The following image shows the BOM Item Tree Administration page with models as children of other models.
For example, models "Installation Fee", "Activation Fee", and "Internet Administration Fee" are child items to
"Internet".

- : BOM Root
BOM Item Tree Administration liém:smaliBlz
Order Variable Name Name Part Number Item ID Item Type Sales Item Manufacturing Item Optional Effective From Effective To
1 smallBiz Name ZS&S Small Business Package Id Model item Y N
2 Internet Name services:business:internet Id Model item Y N N
3 InstFee Name Installation Fee Id Model item Y N N
4 ActFee Name Activation Fee Id Model Item Y N N
5 IntAdminFee Name Internet Administration Fee Id Model item Y N N
6 LL Name servicesbusiness:landLines Id Model Item Y N N
7 SEC Name Service Establishment Charge Id Model item Y N N
8 ScC Name Service Connection Charge Id Model ltem Y N N
9 PAF Name Phone Administration Fee Id Model Item Y N N
10 Taxes Name services:business:taxes Id Model Item Y N N

IMPORTANT: Child models are not reconfigurable. They behave as mandatory models added by Recommended
Item Rules.

30

Validation Errors

If there are any validation errors in the BOM item definition, the BOM Item Tree Administration page displays an

error message, at the top of the page. The item with an error is proceeded by error indicator @. ABOM item

definition is marked as incorrect, if errors exist in the item definitions, attribute definitions, or attribute

translations.

BOM MAPPING WITH TWO VALIDATION ERRORS

The following example illustrates two validation errors.

As shown in the following imageError! Reference source not found., a message at the top of the page indicates

an error on page 1. The sample page also indicates that errors exist for “ET4002” and “ET1000”.

BOM ltem Tree Administration

Name
Laptop ATO MODEL
1002 LAPPRO1101 Intel Dual Core
1003 LAPPRO1108 Amd
2019 Battery Pack
2020 2.5 mA Battery
2021 5.0 mA Battery
2022 7.5 mA Battery
7000 Battery Pack Slot
4000 Etching Service
4001 CPQ Etching Service
@ 4001 BOM Etching Service
4001 ZOC Etching Service
5000 1.11 S Preloaded Data Card
5001 2.22 § Preloaded Data Card

3.33 5 Preloaded Data Card
4.99 5 Preloaded Data Card
Laptop Sleeve

External Drive

Part Number
LPS47TT
PRO1101
PRO1109
BP3000
BP3025
BP3050
BP307S
BPS3500
ET4000
ET4001
ET4002
ET4003
DTCS111
DTC5222
DTCS333
DTCS5499
LPS&000
EXT1000

Item ID
1000
1101
1109
3000
3025
3050
3075
3500
4000
4001
4001
4001
5111
5222

33

v

oo

49
000
7000

@

@

Item Type

Standard ltem
Standard ltem
Standard ltem
Standard ltem
Standard ltem
Standard ltem
Standard Item
Standard ltem
Standard [tem
Standard ltem
Standard ltem
Standard Item
Standard ltem
Standard Item
Standard ltem
Standard ltem
Standard ltem

Standard [tem

Sales Item

¥
v
¥
v
v
v
v
v
v
v
v
v
v
v
¥
v
¥
v

Manufacturing item

-
y
-
;
=
Y
=
=
-
-
y
-
y
-

Optional
M
N
M
N
M
N
N
N
N
N
M
N
M
N
M
N
M
N

BOM Root Item:LP94777

Effective From Effective To

BOM Item Tree Administration Page with Validation Errors

Click on the Variable Name link, for details about the error.

e Refer to the Part Number Does Not Exist in CPQ Parts Database image to view “EXT1000” error details.

e Asshown in the following image, the error for “ET4002” is caused by “ETS002”, one of the associated

attributes.

31

BOM Iltem Administration

€ Incorrect data.

BOM ltem

“ariable Name:
*Name:

*Part Number:
*ltem ID:
Sequence Number:
ltem Type:

Default Quantity:
Cptional

Sales Item
Manufacturing Item

Parentariable Name:
Effective From:

Effective To:
BOM Attribute List
Variable Name Name
ETCO02 EtchingColor
[x] ET EtchingStyle

ET4002

BOM Etching
Service

ET4002

4001

4001
Standard ltem
1.0

v

v

ET4000

Data Type Values
String Red~White~Green~Black
String

BOM Root Item:LP94777

Effective From Effective To

1 Jul 2016

ET4002 Error Example

Click on the attribute Variable Name link, for details about the error.

The following image displays an error message denoting that the “Effective From” value is formatted incorrectly.

& Incorrect data.

BOM Attribute

Display Values:

*Wariable Name: ETS002
Mame: EtchingStyle
Data Type: String
Values:

BOM Attribute Administration

BOM Item:ET4002

I Effective From:

1Jul 2016

& “alue 1 Jul 2015 is formatted incorrectly. The expected date format is yyyy-MM-dd HH:mm:ss. I

Effective To:

Date Formatted Incorrectly

32

As shown in the following image, “EXT1000” is displaying an error because the Part Number does not exist in the

CPQ Parts Database.

BOM Item Administration
& Incorrect data.

BOM Iltem

BOM Root Item:LP94777

Effective From:
Effective To:

*Wariable Name: EXT1000
*Mame: Extarnal Drive
*Part Number: EXT1000 £ The part number of sales item must exist in CPQ.
*ltem ID: 7000
Sequence Number: 7000

ltem Type: Standard Item
Default Quantity: 1.0

Cptional

Sales ltem ¢
Manufacturing ltem .

Parent Variable Name: LPO4777

Non-existent Part Number Error

VALIDATION ERROR IN BOM HIERARCHY WITH MODELS AS CHILDREN

As shown below, when administrators define child items in the BOM hierarchy as models, CPQ Cloud validates
the models in the BOM item definition in the same way as other BOM errors. The BOM Item Tree Administration
page displays an error message at the top of the page. The items with an error are proceeded by the following

error indicator.

BOM ltem Tree Administration

& Incorrect data on page 1.

Order Variable Name Hame Part Number
1 emorRootBOM emorRootBOM erorRoatBOM

@ 0 missingData

© 2 invaigPar invalidPart

@ 2 |nvalidData parti part1

Item 1D
erorfoctBOM

nvalidPart
2

BOM Root
Item:errorRootBOM
Item Type Sales Item Manufacturing ltem Optional Effective From Effective To
Standard lem ¥ N N
Standard [tem
Standard ltem Y Y M
Standard INVALID INVALID INVALID INVALID MWALID

BOM Item Tree with Errors

Click on the attribute Variable Name link, for details about the error.

33

When administrators click the Variable Name associated with the error, the BOM Item Administration page
opens. As shown in the following image, an error message displays when the part number associated with a

BOM item or the path to a model in the BOM hierarchy does not exist in CPQ Cloud.

& Incomect data
BOM Item
“Variable Name:
*Name;
“Part Number:
“ltern ID:
Sequence Number:
ltem Type:
Default Quantity
Owptional

Sales Item

Manufacturing ltem
Parent Variable Name:
Effective From:
Effective To:

BOM Item Administration

nvalidPart
nvalidPart
nvalidPart
nvalidPart

2

Standard Item
1.0

o

o
ermorRootBOM

& The par number or model path of sales lems must exist in CPQ

BOM Root
Item:errorRootBOM

Non-existent Part Number of Model Path

IMPORTANT:

e Errors must be resolved before setting up BOM Mapping Configuration rules.

o |f the BOM Item Administration page shows that parts or models do not exist when an administrator has
created them, deploy the BOM Item Definition table.

e [f the "Buy Direct" field of a part number referenced by a BOM item definition is modified, redeploy the BOM

Item Definition data table.

34

CREATE BOM MAPPING CONFIGURATION RULES

Administrators create BOM Mapping Configuration rules at the Model level. BOM Mapping rules associate Configuration attributes to
the BOM items. Use simple Table-Based Rules, advanced BML-Based Rules, or both for BOM Mapping.

Perform the following steps to create a BOM Mapping Configuration rule.

1. Navigate to the Model Administration List page.
Admin > Catalog Definition > Product Families > Product Lines > Models

2. Select BOM Mapping from the Navigation drop-down menu, and click List.

Model Administration List Product Line : Hi-Tech = Laptops
Select Model Navigation

Sentinal Configurable Attribute * | List

Ultra Configurable Attribute * | List

Elite Configurable Attribute * || List
Configurable Attribute e N
Recommendations -3ofd | BackioTop
Canstraints
Hiding Aftributes Import ~ Export = Add @ Delete = Back
Prices
Bill of Materials

ORACLE" Recommended ltems
Configuration Flows
Rule Summary
Associated Files
BOM Mapping
Access BOM Mapping Rules for a Model
3. Click Add to set up a new BOM Mapping Configuration rule.
BOM Mapping: Rules List Madel : Hi-Tech = Laptops = Elite
Select Order Name (Variable Name) Status Overall Status
BOM Mapping - Mot found for Model.
Back to Top
Add Back

BOM Mapping: Rules List Page

4. Continue to one of the following procedures:

e Define Simple Table-based Configuration Rules

e Define Advanced BML-based Configuration Rules

DEFINE SIMPLE TABLE-BASED CONFIGURATION RULES

A simple table-based BOM mapping rule uses the BOM item mapping data table to declaratively map the
configuration attributes to BOM items.

IMPORTANT: The BOM Item Definition and BOM Item Mapping tables must be activated to use simple Table-
based Configuration rules. If the BOM Item Mapping table is not activated, advanced BML-based must be used.

1. Enter a Name, Variable Name, and Description for the new BOM Mapping Configuration rule.

2. Define the Condition Type for BOM mapping rules.

Beginning in Release 18B, administrators can define a logic condition that specifies when a rule should run.
There are three options: Always True, Simple Condition, and Advanced Condition.

a. Always True: The rule will fire automatically, every time, because a specific condition does not need
to be met.

b. Simple Condition: The rule will fire based on defined condition attributes, operators, and values that
are selected from drop-down menus.

When Simple Condition is enabled, administrators can define Attributes, Operators, Values, Range
Operators, and Range Values for the desired condition. They can also Add Rows and set the Order of
Operations to provide multiple conditions.

c. Advanced Condition: The rule will fire based on an advanced function written with BML.

The advanced function is meant for complex condition logic. Administrators use BML to define
conditions in the Function Editor. After selecting the Advanced Condition type, administrators select
the View/Edit the BML Function to access the Function Editor.

IMPORTANT: Simple and Advanced Conditions are only evaluated during Configuration; these conditions are
NOT evaluated during Reconfiguration.

3. Select a Target BOM from the drop-down menu. The target BOM is an available BOM in the BOM root
items list.

4. Select a Target Commerce Process, if BOM attributes are mapped to line attributes.

5. Click Save and View Details.

36

¥ BOM Mapping: New Rule

& Name: Laptop BOM Mapping Status:) Active Edit Start/End Dates
&) Variable Name: laptopBOMMapping Internal
Inactive

% Description:

¥ Condition: (From Configuration to BOM)

Condition Type: ® Always True Simple Condition Advanced Condition

¥ Action: (Define BOM Mapping)

BOM Mapping Ruls enables vou to map between BOM items and buyer-configured values,

Rule Type: # Simple (Table-baszad) Advanced
Target BOM: hd
Target Commerce Process: w

Save and View Details

kel add | |kl Add and Back | | Back

Create BOM Mapping Rule

Validate Table-based BOM Mapping Rules

If there are validation errors for the BOM item mapping or its children BOM attribute mappings, an error icon is
shown up on the BOM item.

BOM Item Mapping Administration List
& Incorrect data on page 1.
Variable Name E;)nl\:enem AT Part Number g::ﬁs meanrlufacturing Configurable Attribute Configurable Attribute Value
LP24777 LP247TT N N are'youLockingForsLaptopOrDesktop Laptop
(<] LAPPRO1101 PRO1101 7 7 processors INTEL
LAPPRO1109 PRO1108 7 7 processor AMD

BOM Item Mapping Validation Error

Click on the item Variable Name link, for details about the error.

As shown in the following image, there is a typo of the configurable attribute name. It should be "processor"
instead of "processors".

BOM Item Mapping Administration

& Incorrect data.

BOM [tem Mapping

*Variable Name: 1000013
*BOM Item Variable Name: LAPPRO1101
Part Number: PRO1101
BOM Item Name: Intel Dual Core
Item ID: 1101

Item Type: Standard [tem
Default Quantity: 1.0

Sales ltem:

Manufacturing Item:
Configurable Aftribute: processors & Failed to find configuration attribute processors under product family computer preduct line laptop product model laptophiodel.
Configurable Aftribute Value INTEL

BOM Item Mapping with Configurable Attribute Error

37

In the following example, the following error is displayed after the administrator selects Save and View Details.
The BOM Item Definition table had more than one root item under LP94777. Each Table-based BOM Mapping
rule can only map to a single root BOM item tree. If the data table contains more than one root BOM item under
a single BOM mapping rule, it is a validation error.

ion: Product Famity computer, Product Ling laptep, Model laptopMeodsl, BOM Mapping configuration rule Laptep BOM Mapping.
C em LPS47T7.
n List Rule:laptopBOM
- BOM Item Part Number Sales Manufacturing - " - -
Variable Name Variable Name tem tem Configurable Attribute Configurable Attribute Value

Mot found
Showing All Results

BOM Mapping Rule with Invalid BOM Item Definition Error

When creating BOM Item Configuration rules, administrators can define multiple BOM mapping rules, each being
associated with different root BOM items. However, on the sales side, only one of the table-based BOM mapping
rules should apply, based on the Configuration attribute and value defined in the root BOM item mapping. In other
words, a given Configuration state on the sales side can only be associated with a single Sales BOM.

Mapping to Configurable Array Attributes

Table-based BOM Mapping supports mapping to configurable array attributes in both BOM item mapping and
BOM attribute mapping.

BOM ITEM MAPPING FOR CONFIGURABLE ARRAY ATTRIBUTES

When Configurable array attributes are used with BOM Item Mapping, the Array Set row items are mapped to a
matching BOM item. The mapping should be one-to-one between the Array Set row and a BOM item.

For example: In the following BOM Item Mapping Data Table, there are two BOM items displayed under the
"SoftwareRootBOM" item:

e AntiVirusltem - Part Number "antiVirusPart", ConfigAttrVarName "softwareType", and ConfigAttrValue
"Enterprise Anti-Virus"

e Encryptionltem - Part Number "encryptionPart", ConfigAttrVarName "softwareType", and
ConfigAttrValue "EncryptionSoftware"

Data | Schema | Oracle_BomltemMap
Filter: * -
Page Length: 50 |w Deploy @ 2dd Row | | X Delete
Q@ add - | | & File - ||+~ search
_ # Q BOMItem\VarName Part Number ConfigAttrvariName Configattr/alue
4 [Default]
26 Q SRE140200-A546334 SRE140200-A546334 supportLevel _guided Premier
ABO Tables
P BOM 27 Q SRE140200-A548335 SRE140200-A545335 supportLevel _quided Premier
‘_'I Oracle BomattrDef 28 Q SRE140200-A546335 SRE140200-A546336 supportLevel_guided Premier
| Oradle_BomAttrMa, 29 SRE140300-A5458334 SRE140300-A545334 supportLevel _quided Standard
_| P
[£5] Oracle_BomItemDef 30 €3 SRE140300-A548335 SRE140300-A548335 supportlevel_guided Standard
2] Oracle_BomItemMap 31 €3 SRE140300-A345336 SRE140300-AS46336 supportLevel_guidad Stsndard
Fusion
32 @ SoftwareRootBOM softwareSelectionPart
Vision
33 0 Antivirusitem antivirusPart softwareTyps Enterprise Anti-\irus
34 Q Encryptionltem encryptionPart softwareType Encryption Softwars
»
Page|1 of 1 .{,‘? Displaying 1 - 34 of 34

BOM Item Mapping Data Table

38

Customers can use Configurable Array Sets to define BOM items to be selected during Configuration.

For example: The following image displays an Application Software Configuration item with three items:
"Enterprise Anti-Virus", "Encryption Software", and "Encryption Software".

Application Software

& 1 2 3
Software F-‘acl-;age Enterprize Anti-Virus ¥ Encrytion Software ¥ Encrytion Software ¥

Application Software Configuration with Software Packages

When these BOM items are selected during Configuration, the following BOM Instance is generated:

"variableName": "SoftwareRootBOM",
"partNumber": "softwareSelectionPart",
"quantity": 1,
"category": "sales",
"children": [{
"variableName": "AntiVirusItem",
"partNumber": "antivVirusPart",

"quantity": 1

b A
"variableName": "EncryptionItem",
"partNumber": " encryptionPart",
"quantity": 1

b A
"variableName": "EncryptionItem",
"partNumber": "encryptionPart",
"quantity": 1

IMPORTANT:

e When configurable array attributes from an array set are used in more than one BOM item mappings, the
same array attributes form the set must be used in all BOM item mappings.

e Refer to Appendix G: BOM Mapping Configurable Array Attribute Restrictions for more restrictions on BOM

item mappings and explanations.

BOM ATTRIBUTE MAPPING FOR CONFIGURABLE ARRAY ATTRIBUTES

When Configurable Array Attributes are used with BOM Item Mapping, related BOM Attribute Mappings can use
additional Configurable Array Attributes from the same array set. The additional Configurable Array Attributes
for a BOM item are mapped to Attribute Mapping items.

For example: In the following BOM Attribute Mapping Data Table, two Configurable Attributes are displayed:

e supportType - TargetType "BOM_ATTRIBUTE", TargetVariableName "Support"”, and SourceType
"CONFIG_ATTRIBUTE".

e softwareQuantity - TargetType "QUANTITY" and SourceType "CONFIG_ATTRIBUTE".

Oracle_BomAttrMap

Data [schem |

Filter: X =
Page Length: 50 v +" Deploy | |z €2 Add Row | | € Delete
@ Add = | |s¥ File ~ ' Saarch
_ # Q TargeiType TargetariableMams SourceType ConfighAttrvarMams
: Default
L] 1 Q BOM_ATTRIBUTE Screen COMDITIOMAL_STATIC_. .. sCreen
ABO Tables
2 g BOM_ATTRIBUTE Sereen COMDITIOMAL_STATIC_... screen
F BOM
7] Oracle_BomatirDef 3| €| BOM_ATTRIBUTE Suppart COMFIG_ATTRIBUTE supportType
[Oracle_BomaAttrMap 4 € QuaNTITY COMFIG_ATTRIBUTE softwareQuantity
[Z7] oradle_BomItemDef 4
7] oracle_BomItemMap Page|1 of 1 |‘$‘

BOM Attribute Mapping Data Table

Customers can also use Configurable Array Sets to define BOM item attributes to be selected during

Configuration.

For example: The following image displays an Application Software Configuration with three items:

e "Enterprise Anti-Virus" with "Gold" support and quantity "2"

e "Encryption Software" with "Silver" support and quantity "1"

o "Encryption Software" with "Platinum" support and quantity "3"

Application Software

& 1 2 3
Software Pack,age Enterprise Anfi-Virus ¥ Encrytion Software ¥ Encrytion Software ¥
Support Gold ¥ | | Silver ¥ | | Platinum v
Cluantity 2 1 3

Application Software Configuration with Software Packages, Support, and Quantity

40

When these BOM items and attributes are selected during Configuration, the following BOM Instance is

generated:
{

"variableName": "SoftwareRootBOM",

"partNumber": "softwareSelectionPart",

"quantity": 1,

"category": "sales",

"children": [{
" variableName": "AntiVirusItem",
"partNumber": "antiVirusPart",

"quantity": 2,

"attributes": {"Support": {value: "Gold"}}
boo A

" variableName": "EncryptionItem",

"partNumber": " encryptionPart",

"quantity": 1,

"attributes": {"Support": {value: "Silver"}}
boo A

" variableName": "EncryptionItem",

"partNumber": " encryptionPart",

"quantity": 3,

"attributes": {"Support": {value: "Platinum"}}

IMPORTANT:
e BOM Attributes can be mapped to both Configurable Array Attributes and non-array type Configurable
Attributes.

o Referto Appendix G: BOM Mapping Configurable Array Attribute Restrictions for restrictions on BOM

attribute mappings

41

RECONFIGURATION OF CONFIGURABLE ARRAY ATTRIBUTES

During reconfiguration, the array set is initialized to be consistent with the BOM items in the quote. For
example: If a quote contains a single BOM item that maps to the array set, the size of the array set is set to one.

A more complicated use case occurs when some of the array-set attribute domain values are not mapped to
BOM items. In the case, during reconfiguration the unmapped records are left unmodified. For example:

e A Configuration array set "Dessert" is defined, with an attribute called "DessertType" with three options:
Coffee, Ice cream and Cake. "Ice-cream" is mapped to BOM item "BOMlIcecream", "Cake" is mapped to
BOM item "BOMCake", but "Coffee" is not mapped.

e On the sales side, there are only two rows in the "Dessert" menu, one is "Coffee", and the other is "Cake".
e When a user selects “Cake” during Configuration, a Sales BOM is created, containing a BOM item "BOMCake".
e When the BOM instance is saved to a quote, there is a part line corresponding to "BOMCake".

e When the quote is reconfigured, the "BOMCake" part line is replaced by "BOMIcecream".

e During reconfiguration, the BOM mapping from BOM to Launch Configuration replaces the "Cake" in the
"Dessert" array set with "Ice cream", but leaves "Coffee" is unchanged, as Coffee is never involved in the
BOM mapping.

IMPORTANT: Refer to Appendix G: BOM Mapping Configurable Array Attribute Restrictions, to view restrictions
that are enforced, primarily to maintain one-to-one mapping between a row in the array set and a BOM item.

42

DEFINE ADVANCED BML-BASED CONFIGURATION RULES

Advanced BML-based Configuration rules use BML to map between Configuration attributes and BOM items.

¥ BOM Mapping: New Rule

& Name: Laptop BOM Mapping Status: ® Active Edit Start/End Dates
&) Variable Name: laptopBOMMapping Internal
& Description: Inactive

¥ Condition: (From Configuration to BOM)

Condition Type: #® Always True Simple Condition Advanced Condition

¥ Action: (Define BOM Mapping)

BOM Mapping Rule enables yvou to map between BOM items and buyer-configured valuss,

Rule Type: Simple (Table-based) '® Advanced
From Configuration to BOM: |} Define BML Function
From BOM to Launch Configuration: L;\' Define BML Function

Save and View Details

[1.—_|] Add [1.—_|] Add and Back | |4= Back

BOM Mapping Rule - Advanced Function

Two BML expressions can be defined for the two-way mapping:
e From configuration to BOM items

e From BOM to launch configuration

From Configuration to BOM

BML from configuration to BOM is generally used to revise the BOM instance created by the table-based
mapping, though it is possible to use BML-based mapping without the simple, table-based mapping. Use the
_bm bom instance Configuration system attribute to acquire the BOM instance as a JSON object. The BML
script should return a JSON object, which is used to set the BOM instance held by the configuration session.

The BOM instance created by the BML-based mapping must conform to the BOM Item Definition. The instance
is validated against the current BOM Item Definition to verify:

1. BOM items are valid;

2. The following line item fields exist: variableName, partNumber, and quantity.

For BML-based Configuration rule examples, refer to the following samples.

READ AND UPDATE BOM ITEMS SAMPLE

The following example uses BML JSON functions to double the child BOM item quantities.

// Sample BML from Configuration to BOM

//
// Double the quantities of the direct child BOM items of the root BOM

/
// Input Attributes:

// _bm bom instance: the BOM item instance in JSON
//
// Output:
// The BOM item instance in JSON
/=
// Get the first level child BOM items
size = 0;
children = jsonget(bm bom instance, "children", "jsonarray");
if (isnull (children) == false) {
size = jsonarraysize(children);

// Loop through child BOM items.

// No-op if the children is empty or does not exist.

indices = range(size);

for index in indices {
bomItem = jsonarrayget (children, index, "json");
gty = jsonget (bomItem, "quantity", "integer");
jsonput (bomItem, gty * 2);

return bm bom instance;

IMPORTANT: jsonget fetches children by reference, and jsonarrayget returns bomItem by reference.

As a result, updating bomItem directly updates bom item instance.

44

ADD A BOM ITEM SAMPLE

The following example creates the BOM item, and appends it to the "children" node of the parent BOM item.

// Sample code snippet to add a child BOM item to the root
tbl = json{();

jsonput (tbl, "variableName", "TB1");

jsonput (tbl, "partNumber", "40mb 100gb");

jsonput (tbl, "quantity", 3);

// Get the "children" node by reference.
// Subsequent changes to "children" directly update bm bom instance
children = jsonget(bm bom instance, "children", "jsonarray");
if (isnull (children)) {
jsonput (_bm bom instance, "children", jsonarray());
children = jsonget(bm bom instance, "children", "jsonarray");

// Append the child BOM item.
jsonarrayappend (children, tbl);

The following sample BOM instance is created:

"partNumber": "telecom package",
"quantity": 2,
"isModel": false,
"explodedQuantity": 2,
"category": "sales",
"variableName": "TBRoot",
"children": [{
"partNumber": "40mb 100gb",
"quantity": 3,
"isModel": false,
"explodedQuantity": 6,
"variableName": "TB1"

IMPORTANT:

e explodedQuantity is automatically updated once all BML-based BOM mapping rules are executed and
does not need to be set in BML.

e isModel will default to False and does not need to be set in BML. This option is only set to True for
System Configuration.

45

CREATE A ROOT BOM FROM SCRATCH SAMPLE

If table-based BOM mapping rules do not exist, a root BOM can be created from scratch. In this special case,
the bm bom instance system attribute starts as an empty skeleton without the part number or variable

name: {"category": "sales", "isModel": false}

// Sample BML from Configuration to BOM
// Create the root BOM from scratch when there are no table-based BOM mapping rules

//
// Input Attributes:

// _bm bom instance: the BOM item instance in JSON. It starts as a skeleton as
// {"category": "sales", "isModel": false},

// without the part number or variable name.

// Output:

// The BOM item instance in JSON

/=

// The following three fields are mandatory fields to create a BOM item
jJsonput (_bm bom instance, "variableName", "TBRoot");
jsonput (_bm bom instance, "partNumber", "telecom package");
jsonput (_bm bom instance, "quantity", 1);

return bm bom instance;

This results in the following BOM:

"partNumber": "telecom package",
"quantity": 2,

"isModel": false,
"explodedQuantity": 2,
"category": "sales",

explodedQuantity isautomatically updated once all BML-based BOM mapping rules are executed and does
not need to be set in BML.

In BML from Configuration to BOM, the input attribute bm bom instance is never null. If the BOM item
instance does not exist for the current Configuration session, an empty skeleton without the part number or
variable name is sent.

There are subtle differences between table-based mapping and BML-based mapping. If table-based mapping is
defined, it is always fired first. It creates a brand new BOM instance each time it is invoked and BML-based
mapping can then make additional adjustments to that BOM. In this case, the BML does not have to be
idempotent. However, if table-based mapping is not defined, the BML mapping receives the BOM instance
created from the previous update as the starting point and the BML then must be idempotent.

For example: a BML-based BOM mapping creates a warranty BOM item based on configurable attribute "Select
Warranty". If table-based mapping is defined, the table-based mapping creates a new BOM instance before the
BML mapping is fired each time. However, if table-based mapping is not defined, the BML can work on a BOM
instance from the previous update and must account for the possibility that the warranty BOM item may have
been created in the previous update. Without that logic, a duplicate warranty BOM item may be created each
time the end user clicks "Update".

46

DELETE A BOM ITEM SAMPLE

The following example removes the last child BOM item from the root BOM.

// Sample BML from Configuration to BOM
// Remove the last child BOM item.

//

// Input Attributes:

// _bm bom instance: the BOM item instance in JSON

//

// Output:

// The BOM item instance in JSON

[mm e
size = 0;

children = jsonget(bm bom instance, "children", "Jjsonarray");
if (isnull (children) == false) {

size = jsonarraysize(children);

}
if (size > 0) {
jsonarrayremove (children, size - 1);

}

return bm bom instance;

For more complicated cases, JSON path can be used. For example: in Oracle EBS, optional class BOM items are
defined to serve as containers of optional items. In this example, all empty optional class items that do not have
child items are removed.

// Sample BML from Configuration to BOM
// Remove empty optional class items.
// BAn empty optional class item is as such:

// - Its "definition" contains Itemtype == 'CLASS'.

// - Its "children" is empty

//

// Input Attributes:

// _bm bom instance: the BOM item instance in JSON

//

// Output:

// The BOM item instance in JSON
/e

jsonpathremove (_bm bom instance, "$..children[?(@.definition.ItemType=='CLASS' &&
@.children.length()==0)1");

return bm bom instance;

IMPORTANT: Release 18B provides support for removal of empty "Option Class" BOM items in table-based
mapping. Refer to "Option Class" BOM Item Type for more details.

47

ADD A BOM ATTRIBUTE SAMPLE

In the following example, BML is used to insert the "membership card type" BOM attribute, based on the
customer rating. It also illustrates how to use BML to implement comparison operators other than equal.

// Sample BML from Configuration to BOM

// Set the membership card type based on the customer rating
// If 70 <= customerRating, set cardType = Platinum

// If 30 <= customerRating < 70, set cardType = Gold

// else set cardType = Silver

//

// Input Attributes:

// _bm bom instance: the BOM item instance in JSON

// customerRating: an integer from 0 to 100.

//

// Output:

// The BOM item instance in JSON
et

// Locate the membership card BOM item

== 'MembershipCard')]", "json");
if (isnull (membershipCard) == false) {
// Create cardType BOM attribute

cardTypeValue = "Silver";

if (70 <= customerRating) {
cardTypeValue = "Platinum";

} elif ((30 <= customerRating) AND (customerRating < 70)) {
cardTypeValue = "Gold";

}

cardType = json();

jsonput (cardType, "label", "Membership Card Type");

jsonput (cardType, "value", cardTypeValue);

// Attach the cardType BOM attribute

attributes = jsonget (membershipCard, "attributes", "json");
if (isnull (attributes)) {
jsonput (membershipCard, "attributes", Jjson());
attributes = jsonget (membershipCard, "attributes", "json");
}
jsonput (attributes, "cardType", cardType):;
}

return bm bom instance;

membershipCard =jsonpathgetsingle(bm bom instance, "$..children[?(@.variableName

48

CONFIGURABLE ARRAY ATTRIBUTES SAMPLE

This example demonstrates how to use configurable array attributes to create BOM items. The BML code loops

through the software array set and creates the corresponding BOM item based on the software type selected.

}

e
// Sample BML from Configuration to BOM
// Create BOM items based-on configurable array attributes
//
// Input Attributes:
// _bm _bom_instance: the BOM item instance in JSON
// softwareArraySize: int
// softwareType: stringl[]
// softwareQuantity: integer|[]
// softwareSupport: stringl[]
//
// Output:
// The BOM item instance in JSON
/=
// Set up the root BOM item
Jsonput (_bm bom instance, "variableName", "SoftwareRootBOM") ;
jsonput (_bm bom instance, "partNumber", "softwareSelectionPart");
jsonput (_bm bom instance, "quantity", 1);
// Set up children
children = jsonarray();
indices = range(softwareArraySize);
for index in indices {
software = softwareType[index];
variableName = "";
partNumber = "";
if (software == "Enterprise Anti-Virus") {
variableName = "AntiVirusIten";
partNumber = "antiVirusPart";
} elif (software == "Enterprise Anti-Spam") {
variableName = "AntiSpamItem";
partNumber = "antiSpamPart";
} else {
continue;

}
// Create the child BOM item

item = Json{();

jsonput (item, "variableName", variableName) ;
jsonput (item, "partNumber", partNumber);

jsonput (item, "quantity", softwareQuantity[index]);

//Add BOM attributes

attributes = json{();

attr = json();

jsonput (attr, "value", supportTypelindex]):;
Jjsonput (attributes, "Support", attr);
Jjsonput (item, "attributes", attributes);
jsonarrayappend (children, item);

Jsonput (_bm bom instance, "children", children);
return bm bom instance;

49

MANUFACTURING BOM VS SALES BOM

BOM mapping can occur in two scenarios. During a normal Configuration flow, a Sales BOM is created via BOM
mapping. In addition, the getbom BML function can be used to create a manufacturing BOM for fulfillment
integration. Both scenarios trigger all defined BOM mapping rules. Inside the BML-based BOM mapping, the
category field of bm bom instance is used to indicate whether the BML is triggered for sales or
manufacturing BOM mapping.

// No operations are performed if the BML is invoked for a manufacturing BOM.
// This check is only required when getbom is used to extract the manufacturing BOM

category = Jjsonget(bm bom instance, "category"); //"sales" or "manufacturing"
if (category == "manufacturing") {
return bm bom instance;

JSON PATH FUNCTIONS

The JSON path functions can be used to provide versatile modification of JSON objects.

IMPORTANT: Refer to the JSON Function topic in the CPQ Cloud Administration Online Help for detailed
information for the following JSON path functions:

¢ jsonpathgetsingle

¢ jsonpathgetmultiple

¢ jsonpathcheck

¢ jsonpathremove

50

From BOM to Launch Configurations

At the beginning of reconfiguration, BML can be used to set initial configuration attribute values to be consistent
with the input BOM instance when the configurator is launched. The bm bom instance configuration
system attribute is used to acquire the BOM instance as a JSON object. The BML execution returns name-value
pairs in JSON to set the configuration attributes:

e The key is the configuration attribute variable name.
e The values are typically strings, but any data that can be properly converted to string is acceptable.

e If the configuration attribute is MSM or an array attribute, the value should be a JSON array of strings.

The following table provides Configurable Attribute examples.

Configurable Attributes Sample Value Comment
Integer Attribute "
1 Interpreted as "1"
Boolean Attribute "true"
"false"
true Interpreted as "true"
false Interpreted as "false"
Integer Array ["1","2","3" For array attributes, three rows exist in the array set.
et AT AL For MSM, menu item "1", "2", "3" are checked.
[1, 2, 3] Interpreted as ["1", "2", "3"]
Boolean Array Attribute ["true", "false", "true"]
[true, false, true] Interpreted as ["true", "false", "true"]

51

OVERRIDE SIMPLE CONFIGURABLE ATTRIBUTES SAMPLE

In the following example, we set the customer rating to be consistent with the membership card type, if the
customer rating is not in the range that is consistent with the card type.

// Sample BML from BOM to Launch Configuration

//

// Set the membership card type based on the customer rating if the current customer
// rating is inconsistent with the card type

// If cardType == Platinum and customerRating < 70, set customerRating = 85

// If cardType == Gold and customerRating not in [30,70), set customerRating = 50
// If cardType == Silver and customerRating not in [0, 30), set customerRating = 15
//

// Input Attributes:

// _bm bom instance: the BOM item instance in json

// customerRating: an integer from 0 to 100.

//

// Output:

// attributeOverrides, json as a name-value pair to set configuration attribute values

attributeOverrides = json();
if (isnull(_bm bom instance) == false) {
cardTypeValue =
jsonpathgetsingle(bm bom instance, "S$..children[?(Q.variableName ==
'MembershipCard')] .attributes.cardType.value");
if ((cardTypeValue == "Platinum") AND (customerRating < 70)) {
jsonput (attributeOverrides, "customerRating", 85);
} elif (cardTypeValue == "Gold" AND (customerRating < 30 OR customerRating
>=70)) {
jsonput (attributeOverrides, "customerRating", 50);
} elif (cardTypeValue == "Silver" AND customerRating > 30) {
jsonput (attributeOverrides, "customerRating", 15);

}

return attributeOverrides;

Note the null check for _bm_bom_instance. Unlike from configuration to BOM, bm_bom_instance can be null
for BML to handle from BOM to configuration. Furthermore, from BOM to configuration is always invoked in the
context of sales BOM.

52

OVERRIDE CONFIGURABLE ARRAY ATTRIBUTES SAMPLE

The following is a more complicated example that sets the values of configurable array attributes. It is the
reverse mapping of the previous Configurable Array Attributes Sample.

// Sample BML from BOM to Launch Configuration
// This example sets software array sets based on the enterprise software BOM items.

//
// Input Attributes:

// _bm bom instance: the BOM item instance in JSON
//
// Output:

// attrOverrides, Jjson as a name-value pair to set configuration attribute values

attrOverrides = json();
// _bm bom instance might be null. It is prudent to check.
if (isnull(bm bom instance)) {

return attrOverrides;

}

size = 0;
children = jsonget(bm bom instance, "children", "jsonarray");
if (isnull (children) == false) {
size = Jjsonarraysize (children);
}
softwareTypes = jsonarray();
softwareQuantities = jsonarray();
softwareSupports = jsonarray();

// Loop through "children". No operations are performed if children do not exist
// or are empty.
indices = range(size);
for index in indices {
item = Jjsonarrayget (children, index, "json");

software = "";

variableName = jsonget (item, "variableName");

if (variableName == "AntiVirusItem") {
software = "Enterprise Anti-Virus";

} elif (variableName == "AntiSpamItem") {
software = "Enterprise Anti-Spam";

} else {
continue;

}
quantity = jsonget (item, "quantity", "integer");
support = Jjsonpathgetsingle(item, "$.attributes.Support.value");
jsonarrayappend (softwareTypes, software);
jsonarrayappend (softwareQuantities, quantity);
jsonarrayappend (softwareSupports, support):;
}
jsonput (attrOverrides, "softwareType", softwareTypes);
Jjsonput (attrOverrides, "softwareQuantity", softwareQuantities);
Jjsonput (attrOverrides, "softwareSupport", softwareSupports);
// set the correct size for the array set
Jsonput (attrOverrides, "softwareSize", jsonarraysize(softwareTypes));
return attrOverrides;

53

REFERENCING BOM ITEMS

BOM ITEM DEFINITION TREE REFERENCES

The BOM Item Definition is hierarchical. The “BomltemDef.ParentVariableName” recursively points to its parent
“BomltemDef's VariableName”. The BOM Item Definition hierarchy, along with its BOM Attribute Definition
children, and BOM Attribute Translation grandchildren forms a BOM item definition tree.

To ease queries and migration, all BOM definition entities must include the root BOM Item Definition Variable
Name:

o BomltemDef.RootVariableName
o BomAttributeDef.RootBomltemVarName

e BomAttributeTranslation.RootBomItemVarName

BOM ITEM MAPPING TREE REFERENCES

The BOM Item Map and its children BOM Attribute Maps form a BOM Item Mapping Tree, based on the BOM
Item Tree. A BOM Mapping Configuration rule should only reference a single BOM Item Mapping Tree.

To ease queries and migration, all BOM Mapping entities must include the BOM Mapping rule location
“productFamilyVarName:productLineVarName:modelVarName:configRuleVarName”, in the following Data
Table columns:

e BomltemMap.ParenBomMapVarName

e BomAttrMap.RootBomMapVarName

In the rare case where two Configuration Models use the same BOM item mappings, as defined in the Data
Tables, the wildcard rule location can be used, in the format of *: configRulevarName. Exact BOM Mapping
rule locations have a higher precedent over wildcard rule locations. A BOM Mapping Configuration rule attempts
to load its BOM Item Mapping Tree that uses an exact rule location first. If there are no BOM ltem Mapping Data
Table records matching the exact rule location, will the BOM Mapping Configuration rule attempt to load a BOM
Iltem Mapping Tree that uses a wildcard rule location. This means that a BOM Mapping Configuration rule loads
its BOM Item Mapping Tree using either the exact rule location or the wildcard rule location, but it never loads
both locations.

54

BML FUNCTIONS TO EXTRACT SALES AND MANUFACTURING BOMS

When a Sales BOM is extracted from a quote, the return result is based on the root BOM line (i.e. the root
Model line) as its children BOM part lines. If the "validateBomModel" flag is true, the last saved BOM instance is
validated, and normalized, against the latest BOM item definition.

When a Manufacturing BOM is extracted from a quote, it starts with the saved configuration state on the model
line, and executes a BOM mapping from configuration to BOM. The execution fires both the table-based BOM
mapping, as well as advance BML mapping. Table-based mapping automatically generates a Manufacturing
BOM, based on the BOM item mappings and the BOM item definitions. The BML-based BOM mapping, if
defined, is more complicated. The same BML-based BOM mapping rules are invoked to create both a Sales BOM
and Manufacturing BOM. Inside the BML script, administrators indicate whether the BML-based rule creates a
Sales BOM or a Manufacturing BOM using the category" field of the input _bm bom instance. If the
category is "manufacturing”, the BML script is invoked to create a Manufacturing BOM.

ADVANCED SETTINGS

Disable Auto Updates
1. Administrators can set Disable auto-updates on BOM Mapping rules.
2. Navigate to Admin > Products > Configuration Settings
3. Set the Disable auto-updates on BOM-Mapping rules option.
e No, is the default setting.

e Yes, disables BOM mapping rules during the Configuration session until the Configuration is saved to
a quote.

» Options - BOM Mapping
iDissbIs auto-updates on BOM-Mapping rules ® Yes MNo

Disable BOM Mapping Rule Auto-Updates

Set Row Count per Page
Administrators can customize the BOM Item Tree and BOM Item Mapping Tree page sizes.

1. Navigate to Admin > General > General Site Options
2. Click Feature Settings > Row Count Per Page.

3. Use the Drop-down menus to set BOM Item List Page Result Set Sizes.

BOM [tem List Page Result Set Sizes
BOM [tem Tree Fages i o«
BOM ltem Map Pages 2 T

Customize BOM Item Page Sizes

55

APPENDIX A: BOM MAPPING SYSTEM ATTRIBUTES

Several new system attributes support the BOM Mapping feature. Administrators can use these attributes to

display the BOM hierarchy or hierarchy relationships in the Commerce Transaction Line Item Grid user interface.

For more information on these attributes and their role in BOM Mapping and Subscription Ordering, refer to the
BOM Mapping Implementation Guide and the Asset-Based Ordering Implementation Guide.

Name

Line Item BOM ID
Line Item BOM ID

Line BOM Part
Number

Line Iltem BOM
Attributes

Line BOM Item
Quantity

Line BOM Level

Line BOM Effective
Date

Variable Name

_line bom id

_line bom parent id

_line bom part number

_line bom attributes

~line bom item quantity

_line bom level

_line bom effective date

Type
Text
Text

Text

Text

Integer

Integer

Date

Description

The BOM item instance id.
The parent BOM item instance id.

The part number of the BOM item. Only
applicable to the model line.

BOM attributes, stored as a JSON string.

The BOM item line quantity. This is the
unexploded line quantity, whereas
_price_quantity stores the exploded quantity.

The BOM item depth (level) in the quote. The
value is O for the root BOM item.

BOM Effective Date. If null, it is interpreted as
the current time.

56

APPENDIX B: BOM ITEM DEFINITION TABLE SCHEMA

Default table name: Oracle_BomItemDef

Index Key Name

Y

Y ' VariableName

SequenceNum

ItemId
Name

ItemType

PartNumber

DefaultQuantity

Optional

EffectiveFrom
EffectiveTo

SalesItem

ParentVariableName

Type Required Display Name

String Y

Integer

String Y
String Y

String

String Y

Float

String

String
String

String

String

Variable Name
Sequence
Number

Item ID

Name

Item Type

Part Number

Default Quantity

Optional

Effective From
Effective To

Sales Item

Parent Variable
Name

Description / Comments

The primary key column of this table. This field cannot be empty.

BOM item sequence.

BOM item ID, e.g. Item Id as stored in EBS.
Display name.

BOM item type.

To enable inherited parent hierarchies for child BOM items, refer to
Option Class BOM Item Type.

Contains either the part number of a BOM item or a Model path (i.e. the path to a model
in the BOM hierarchy)

* This field contains the part number when both a part number and a model path are
required for System Configuration inter-model references.
* For model path syntax, refer to Model Path Format.

The default quantity of the BOM item.

Indicates whether the BOM item is optional.

Valid values: Y or N.
The effective from date. Formatted as YYYY-MM-DD HH:mm:ss
The effective to date. Formatted as YYYY-MM-DD HH:mm:ss

Indicates whether the item is a sales item.
Valid values: Y or N.
The variable name of the hierarchical parent BOM item. This is a recursive key to the
parent BOM Item Definition BomItemDef.VariableName.
e This field is Null for the root Item.

e This field is required for all child items otherwise, a validation error will occur.

57

Index Key Name Type
Y RootVariableName String
ManufacturingItem String

IncludedInBasePrice | String

Required Display Name

Y

Root Variable
Name

Manufacturing
Iltem

Included In Base
Price

Description / Comments

The variable name of the root BOM item. This is a recursive key to the root BOM Item
Definition BomItemDef .VariableName.

e For aroot BOM Item, the variable name and the root variable name are the same.

e Orphan records of dirty root BOM item variable names are ignored.

Indicates whether the item is a manufacturing item.

Valid values: Y or N.

This is an optional column that indicates whether the item is included in the base price.

Valid values: Y or N.

58

DEFINE PARTS AND MODELS AS CHILD ITEM IN THE BOM HIERARCHY

Any part or model can be defined as a child item in the BOM hierarchy. Administrators accomplish this using
either the BOM Item Definition table or the Save BOM BML function.

IMPORTANT: To add a child model to a BOM using a BOM Mapping Rule, administrators must add the child
model to the BOM Item Mapping table. If adding a child model to a BOM using the Save BOM BML function, this
step is not necessary.

The PartNumber column in the BOM Item Definition table can contain either the part number of a BOM item
or the path to a model in the BOM hierarchy.

Model Path Format

The format for defining the path to a model is as follows:
productFamilyVariableName:productLineVariableName:modelVariableName

IMPORTANT: Entries in the PartNumber column that contain colons (:) represent a path to a model.

"Option Class" BOM Item Type

Beginning in Release 18B, the "Option Class" BOM item type can be used to enable inherited parent hierarchies
for child BOM items. Option Class items are only added if they contain a descendant BOM item (child,
grandchild, etc.) that is not an Option Class item.

Option Class Example

The following image displays a Configuration page for a cable channel provider that offers different channel
options as part of their Sports Channel and Entertainment Channel plans.

Update Start Over Previous Create Transaction

Channel Set Up

Sports Channel List Bzseball Bazksthall Football Hockew Soccer
. e ‘\ l' 1
© o @ ‘ /. ‘.
Entertainment Channel List Fzmily Charnel Home Metwork Movie Channel Travel Channe

A B

Sample Configuration Page for Cable Channel Provider

59

When the user selects the Baseball channel and creates a transaction, the parent items (l.e. "Channels" and
"Sports Channels") are automatically added as Line Items to the Transaction. The parent items are also added to
the BOM Instance, which is sent to the Fulfillment System, to complete the order.

Line Item Information
Item = Item Order Qty
=l J & @ & 1 Cable Corp Plan 1
i 2 Channels 1
- 3 Sports Channels 1
o 2 Baseball Channels 1

Commerce Transaction for Sports Channel Page

For parent items the Item Type is set to "Option Class", the Item Type for child items can be set to anything
other than "Option Class". The BOM parent items will only be added to the BOM Instance when a nested child
item is selected. During table-based BOM mapping, "Option Class" items are not added to the BOM instance
unless they have a descendant that is not an "Option Class" item.

Advanced BML BOM Mapping rules can be used to add "Option Class" items that do not have a descendant that
is not an "Option Class" item.

Data | schema | Oracle_BomlitemDef
s %/| pagerengtn: 5o |+ " Daploy € Add Row | | 3 Dalete
D add ~ | (¥ Fie v |+ search s ariableMame [Key) Itemid Hame ItemType
[Dskult) 1 0 CableCompPlan 1 Cable Comp Plan Standard |tem
. :f:Tables 2| € Channeis 2 Channels Option Class
| Oracle_BomAttrDef 3 g SportsChannels 3 Sports Channels Option Class
| Oradle_BomaAttrMap 4| € BasebaliChanne - Baseball Channel Standard Item
J Oracle_BomlItemDef 5 g BasketballChannel 5 Basketball Channel Standard ltem
_ | Oracle_BomItemMap € €) FootbaliChannel & Football Channel Standard Item
Contract Negotiation 7 g HockeyChannel T Hockey Channal Standard ltem
Fusion 8 € SoccerChannel 8 Sotcer Channel Standard Item
Vision
g g EntertainmentChannels -} Entertainment Channels Option Class
10) FamilyChannel 10 Family Channel Standard Item
1 g HomeaMNeabawork 1n Home Network Standard Item
12 Q MovieChannel 12 Movie Channel Standard Item
13 g TravelChannal 13 Travel Channal Standard Item
Page 1 of 1 o

BOM Item Definition Data Table with Option Class Item Types

60

APPENDIX C: BOM ITEM MAPPING TABLE SCHEMA

Default table name: Oracle_BomltemMap

Index Key Name Type | Required Display Name Description / Comments
Y |VariableName String Variable Name The primary key column of this table.
BomItemVarName String BOM Item Variable The variable name of the BOM item. This is a foreign key to
Name BomItemDef.VariableName.
The BOM item must exist otherwise, a validation error will occur.
ConfigAttrVarName String Configurable Attribute | The variable name of the Configuration attribute.
Variable Name e If this field is not null, the BOM item is created when the buy-side
configurator attribute value matches the value stored in
"ConfigAttrValue" column.
o If this field is null, the BOM item is created unconditionally.
ConfigAttrValue String Configurable Attribute | The value of the configurable attribute.
Value This field can be null. A null values is interpreted as an empty string.
Y ParentBomMapVarName String Parent BOM Map The fully qualified variable name of the BOM Map Configuration rule.
Variable Name Formatted as: productFamilyVarName:productLineVarName:
modelVarName:configRuleVarName.
Orphan records of invalid BOM mapping rule variable names are ignored.
EffectiveFrom String Effective From The effective from date. Formatted as YYY-MM-DD HH:mm:ss
EffectiveTo String Effective To The effective to date. Formatted as YYY-MM-DD HH:mm:ss
ConfigAttrvVarNamel String Configurable Attribute Additional mapping attribute name fields to support mapping to multiple
through Variable Name 1 Configurable Attributes.
ComElgptervamiznely through Refer to Multiple Attribute Mapping for BOM Mapping Items.
Configurable Attribute
Variable Name 10
ConfigAttrvValuel String Configurable Attribute Additional mapping attribute value fields to support mapping to multiple
through Value 1 Configurable Attributes.
Confighttrvaluel0 through Refer to Multiple Attribute Mapping for BOM Mapping Items.

Configurable Attribute
Value 10

61

MULTIPLE ATTRIBUTE MAPPING FOR BOM MAPPING ITEMS

Beginning in Release 18B, ten additional mapping attribute and value fields are available for the BOM Item
Mapping table to support mapping to multiple Configurable Attributes. This allows the selection of multiple
configuration options to add a single Line Iltem to a BOM-related Transaction.

Additional Configurable Attributes for BOM Item Mapping

The BOM Item Mapping Table associates BOM items to Configuration attributes. Administrators will upload or
migrate BOM structures to CPQ Data Tables using CPQ Cloud’s standard importing features. The Data Table can
then be linked to the corresponding BOM Mapping platform tables. Activating this table enables simple Table-
Based BOM Mapping Configuration rules. The items that are available for mapping are displayed in the Column
Mapping drop-down menus. The list of menu options is derived from the BOM Item Mapping Data Table
columns Names.

Edit BOM Table Definition
BOM Table Definition

MName: BOM Item Mapping
Table MName: Cracle_BomltemMap v
Download Sample

Column Name Data Type Description Column Mapping

\ariable Mame String The natural key column of this table “ariableName v
BOM Item “ariable Name String The variable name of the BOM item Bomltem'/arMName r
Configuration Afribute \ariable Nams String The variable name of the configurable attribute ConfigattrvarName v
Configuration Aftribute \alue String The value of the configurable attribute Configatirvalue v
Parent BOM Mapping “ariable Name String The variable name of the BOM Map configuraticn rule ParentBomMap'/arName ¥
Effective From String The effective from date EffectiveFrom v
Effective To String The effective to date EffectiveTo A
Additicnal Configuration Aftribute “Varisble Mame 1 String The variable name of the first additional configurable atiribute in multiple attribute mapping ConfigatirvarName1 v
Additicnal Configuration Aftribute Value 1 String The value of the first additional configurable attribute in multiple attribute mapping "“31 -
Additicnal Configuration Aftribute “ariable Mame 2 String The variable name of the second additicnal configurable attribute in multiple attribute mapping ConfighttrvarName2
Additicnal Configuration Aftribute “Value 2 String The value of the second additional configurable attribute in multiple attribute mapping gz:zgig; ,::'I:Je:l“ﬂeS
Additicnal Configuration Aftribute “Variable Mame 3 String The variable name of the third additional configurable attribute in multiple atfribute mapping Configattrv/alued

Additional Configuration Atribute \alue 3 String The value of the third additional configurable atfribute in multiple sttribute mapping gz:zgig;‘::’ﬁ‘:ﬁ“
Additional Configuration Aftribute \arisble Name 4 String The variable name of the fourth additional configurable atfribute in multiple attribute mapping Confightir/arNames
Additional Configuration Aftribute Value 4 String The value of the fourth additional configurable attributs in multiple atribute mapping gz;zgig;:zﬁfj‘ﬂeﬁ
Additicnal Configuration Aftribute “ariable Mame 5 String The variable name of the fifth additional configurable atfribute in multiple attribute mapping Confighttraluet

Additional Configurstion Aftribute Valug 5 String The value of the fifth additional configurable sttributs in muttiple attribute mapping Confighttr/arNameT
Additicnal Configuration Aftribute “Variable Mame & String The variable name of the sixth additional configurable attribute in multiple atfribute mapping e

ConfigattryarNamed

Additional Configurstion Aftribute Valug 6 String The value of the sixth addifienal configurable attribute in multiple attribute mapping Confightiraluss
ConfigattryarNamed

Additicnal Configuration Aftribute “Varisble Mame 7 String The variable name of the seventh additional configurable attribute in multiple attribute mapping Confighttr/alues

Additional Configuration Atribute \alue 7 String The value of the seventh additional configurable attribute in multiple attribute mapping Configatir/ariame10
Additicnal Configuration Aftribute “Variable Mame 8 String The variable name of the sighth additional configurable attribute in multiple attribute mapping Eanﬁg.i:rtr'\:-E!lIJ‘e;chu
Additional Configuration Aftribute \alue & String The value of the eighth additional configurable attribute in multiple attribute mapping Confightirvaluss v
Additicnal Configuration Aftribute “ariable Mame 9 String The variable name of the ninth additional configurable atiribute in multiple attribute mapping ConfighttryarNamed v
Additicnal Configuration Aftribute “Value 9 String The value of the ninth additional configurable attribute in multiple attribute mapping Configatirvalued v
Additicnal Configuration Aftribute “Variable Mame 10 String The variable name of the tenth additional configurable attribute in multiple atiribute mapping ConfigattrvarName10 v
Additicnal Configuration Aftribute Value 10 String The value of the tenth additional configurable atribute in multiple attribute mapping Confightirvalue10 v

Edit BOM Table Definition Page for BOM Item Mapping

62

Configurable Attribute Columns in the BOM Item Mapping Data Table

Prior to mapping, the additional Configurable Attribute and Value fields must be added to the BOM Item

Mapping Data Table Schema tab. The following image displays a BOM Item Mapping Data Table with ten
additional Configurable Attribute and Value columns added to the Data Table schema.

| Data | Schema Oracle_BomltemMap

[oracle_BomattrDef
[Oracle_BomattrMap
[oracle_BomItemDef
[orade_BomItemMap
» |_| Contract Negotiation

= || Vision

Filter: -3
© add - | | & File v | |/~ search
> || [Default]

» || ABO Tables

F] BOM

Live (Mot Deployed)

2 Q Index Key Name

1
2
3

12
13
14
15
16

17

0000000000000 000O0DDO00DD0

i

WariableName:
Bomltem'variame
Confighttr/arMame

Confighttryalus

ParentBemMap'/arlame

el @ Add Columnn 6 Add Foreign kKey @ Add Relationship | | &
Description
The natural key column of this table
The variable name of the BOM item
The variable name of the configurable attribute
The value of the configurable attribute

The variable name of the BOM Map cenfiguration rule

EffectiveFrom The effective from date

EffectiveTo The effective to date

Configattr/ariams1 The variable name of the first additional configurable attribute in multiple attribute mapping.
Confighttri/alue1 The value of the first additional configurable attribute in multiple atfribute mapping.
Confighttr/arMame2 The variable name of the second additional configurable affribute in mulfiple attribute mapping.
Confighttr/alus2 The value of the second additional configurakle attribute in multiple attribute mapping.
Confighttr/arMame3 The variable name of the third additional configurable attribute in multiple attribute mapping.
Confighttry/alue3 The value of the third additional configurable attribute in multiple attribute mapping.
Confighttr/arMamed The variable name of the fourth additional configurable attribute in multiple attribute mapping.
Confighttr/alusd The value of the fourth addicnal configurable attribute in multiple attribute mapping.
Confighttr/arMames The variable name of the fifth additicnal configurable sttribute in multiple attribute mapping.

Confighttr/alues
ConfighttrarMames
Confighttr/aluet
Confighttr/arMame7?
Confightir/alus?
Confighttr/arMamesd
Confighttry/alues
Confighttr/arfamed
Confighttr/alusd
Confightir/arMame10

Confighttr/alue10

The value of the fifth additional configurable attribute in multiple atfribute mapping.
The variable name of the sixth additional configurable attribute in multiple attribute mapping.

The value of the sixth additional configurable attribute in multiple attribute mapping.

The variable name of the seventh additional configurable attribute in multiple attribute mapping.

The value of the seventh additicnal configurable attribute in multiple attribute mapping.

The variable name of the sighth additional configurable attribute in multiple attribute mapping.
The value of the eighth additional configurable attribute in multiple attribute mapping.

The variable name of the ninth additienal configurable attribute in multiple attribute mapping.
The value of the ninth additional configurable attribute in multiple attribute mapping.

The variable name of the tenth additional configurable atiribute in multiple attribute mapping.

The value of the tenth additicnal configurable attribute in multiple attribute mapping.

Type
String
String
String
String
String
String
String
String
String
String
String
String
String
String
String
String
String
String
String
String
String
String
String
String
String
String

String

Oracle BomitemMap Data Table with Additional Configurable Attribute Columns

63

Multiple Attribute Mapping Example

After the additional Configurable Attribute and Value fields have been added to the BOM Item Mapping Data
Table schema, the Data Table can be populated with the additional Configurable Attributes and Values. BOM
Mapping can now evaluate the combination of several different Configuration attributes and then add a single
child part to the quote based on multiple attribute selections.

For example: The following BOM Item Mapping Data displays two BOM items with "speed" and "dataDownload"
attributes. If a user selects a speed of 40Mbps and a data download option of 100GB, then the TelecomPackagel
part will be added to the quote.

Data | schema | Oracle_BomitemMap
Page Length: 50w %" Deploy @ add Row | | X Delete
2 Q |\ /ariableMame (Key) BomltemarName ConfigAttrvarMName Configattr/alue ConfighattrvarMame1 Confighttrvalue1
35 Q TelcomPackage1 TB1 speed 40MBps dataDownload 100GE
36 Q TelcomPackage2 TB2 speed 100Mbps dataDownload unlirited

.3

BOM Item Mapping Data Table

When additional Configurable attributes have been added and mapped, administrators can view the mapped
attributes in the BOM Item Mapping Administration List and BOM Item Mapping Administration pages.

View BOM Item Mapping Administration Pages
Complete the following steps to view additional configurable attributes.
1. Navigate to the Admin Home Page.

2. Under Products, click Catalog Definition.
The Supported Products page opens.

3. Select Product Families from the Navigation drop-down.

4. Click List.
The Supported Product Families page opens.

5. Next to the applicable Product Family, select Product Lines from the Navigation drop-down.

6. Click List.
The Product Line Administration List page opens.

7. Next to the applicable Product Line, select Models from the Navigation drop-down.

8. Click List.
The Model Administration List page opens.

9. Next to the applicable Model, select BOM Mapping from the Navigation drop-down.

10. Click List.
The BOM Mapping: Rules List page opens.

11. Select the applicable rule.
The BOM Mapping Rule page opens.

64

¥ BOM Mapping: bomTelecomRule

& Name: bomTelecomBule Status:) Active Edit Start/End Dates
& Variable Name: Internal
& Description: Inactive

¥ Condition: (From Configuration to BOM)

Condition Type: ® Always Trus Simple Condition Advanced Condition

¥ Action: (Define BOM Mapping)

2OM Mapping Rule enables you to map between BOM items and buyer-configured values.

Rule Type: ® Simple (Table-based) Advancad
Target BOM: TelecomBom v
Target Commerce Process: v

|| Save and View Details |

L‘;’] Printer Friendly \Version 24 Email a Copy D Translations | |zl Apply = Update and Back | % Back

BOM Mapping Rule Page

12. Click Save and View Details.
The BOM Mapping Administration List page opens.

In the following image, the mapped Configuration Attributes are shown. If there are any Additional
Configurable Attributes, the Additional Attribute Mapped column will be setto Y.

BOM Item Mapping Administration List

Rule:bomTelecomRule

. BOM Item Sales Manufacturing | Configurable Configurable Additional Attribute " " Included In

inrabiclianc Variable Name ~ Part Number item Item Attribute Attribute Value Mapped Remjpe Effectivelbam Effective o g,qe price
TelscomRootBom TelecomBom Intemet Y N Stgndard ltem
TelecomPackagel TB81 40MB_100GB Y ¥ speed 40Mbps Y Standard ltem
TelecomPackage2 TB2 10D0MB_Unlimited Y ¥ speed 100Mbps Y Standard ltem

Showing All Results

Cancel

BOM Item Mapping Administration List Page

13. Select the applicable Variable Name to view the Additional Configurable Attributes.
The BOM Item Mapping Administration page opens.

The associated Configurable Attribute and Additional Configurable Attributes are displayed.

For example: The BOM Item Mapping details for "TelecomPackagel" are displayed in the following
image. When "40Mbps" is selected for the "speed" attribute and "100GB" is selected for the
"dataDownload" attribute, the TelecomPackagel part will be added to the quote.

BOM Item Mapping
*ariable Name:
*BOM Item Wariable Name:

BOM Item Mapping Administration

TelecomPackage1
TE1

Additional Configuration Attribute Variable Name

Additional Configuration Attribute Value

Fart Number: 40MB_100GE
BCM Item Name: TelecomPackage
Item 1D 8

Item Type: Standard ltem
Default Qluantity: 10

Sales ltem: v

IManufacturing ltem: <

Configurable Attribute; speed
Configurable Attribute Value: 40Mbps

dataDownload
100GB

Effective From:
Effective To:
Included In Base Price:

BOM Attribute Mapping List

Mot found

Variable Name Target Type Target Source Type Static Entry

rule:bomTelecomRule

Configurable Attribute Configurable Attribute Value Effective From Effective To

Back to Top

Cancel

BOM Item Mapping Administration Page

66

APPENDIX D: BOM ATTRIBUTE DEFINITION TABLE SCHEMA

Default table name: Oracle_BomAttrDef

Index

Y

Key

Y

Name
VariableName
Name

Values

DisplayValues

EffectiveFrom
EffectiveTo

BomItemVarName

DataType

RootBomItemVarName

Type
String
String

String

String

String

String

String

String

String

Required

Y

Display Name
Variable Name

Name

Values

Display Values

Effective From
Effective To

BOM Item Variable
Name

Data Type

Root BOM ltem
Variable Name

Description / Comments

The primary key column of this table.
Display name of the attribute, in the site base language.

Domain values of the attribute if the attribute is a menu type.
Values of the attribute separated by ~. Applicable only if the attribute is a menu

type, otherwise this value is empty. The values use the site base language.

Display values of the attribute if the attribute is a menu type separated by ~.

Must be empty if Values column is empty. If Values is not empty, the number of
display values as separated by ~ must match that of values. The values use the site
base language,

The effective from date. Formatted as: YYYY-MM-DD HH:mm:ss
The effective to date. Formattedas: YYYY-MM-DD HH:mm:ss

The variable name of the parent BOM item. Key to
bomAttrDef.VariableName

Orphan records of dirty BOM item variable names are ignored.

The data type of the attribute values. Legal Values: String, Integer, Float, Date,
Boolean

The variable name of the root BOM item. Key to
BomItemDef .VariableName of the root BOM item definition.

Orphan records of dirty root BOM item variable names are ignored.

67

APPENDIX E: BOM ATTRIBUTE MAPPING TABLE SCHEMA

Default table name: Oracle_BomAttrMap

Index Key Name

Y

VariableName

TargetType

TargetVariableName

SourceType

StaticEntry

ConfigAttrVarName

ConfigAttrValue

EffectiveFrom

EffectiveTo

Type
String

String

String

String

String

String

String

String

String

Required

Display Name
Variable Name

Target Type

Target Variable Name

Source Type

Static Entry

Configurable Attribute
Variable Name

Configurable Attribute
Value

Effective From

Effective To

Description / Comments

This is the primary key for the table.

The mapping target type. Acceptable values are:

e BOM_ATTTRIBUTE: mapped to a BOM item attribute
e LINE_ATTRIBUTE: mapped to commerce (quote) line attribute
e QUANTITY: The BOM line item quantity.

The variable name of the target BOM attribute or commerce line attribute.

Depending on the target type, this is the variable name of the target BOM
attribute or line attribute.

The mapping source type. Acceptable values are:

e STATIC_ENTRY: The target is always set to the value in StaticEntry

e CONDITIONAL_STATIC_ENTRY: The target is set to the value in Static
Entry if the configuration attribute at runtime matches the value to
ConfigAttrValue.

e CONFIG_ATTRIBUTE: the target is set to the value of the configuration
attribute

A static value that is used as the source of mapping

The variable name of the configurable attribute.

The value of the configurable attribute.

The effective from date. Formatted as YY-MM-DD HH:mm:ss

The effective to date. Formatted as YYY-MM-DD HH:mm:ss

68

Index

Key Name

BomItemMapVarName

RootBomMapVarName

Type Required

String Y

String Y

Display Name

BOM Item Map
Variable Name

Root BOM Map
Variable Name

Description / Comments

The variable name of the parent BOM item map.

Key to BomItemMap.VariableName.

Orphan records of invalid BOM item mapping variable names are ignored.

The fully qualified variable name of the BOM Mapping Configuration rule.
Formatted as: productFamilyVarName:productLineVarName:

modelVarName:configRuleVarName,
Orphan records of invalid root BOM mapping rule variable names are
ignored.

69

APPENDIX F: BOM ATTRIBUTE TRANSLATION TABLE SCHEMA

Default table name: Oracle_BomAttr_Tr

Index Key Name
Y Y VariableName

Language

BomAttrVariableName

Name

Values

Y RootBomItemVarName

Type
String

String

String

String

String

String

Required

Display Name
Variable Name

Language

BOM Attribute
Variable Name

Name

Values

Root BOM Item
Variable Name

Description / Comment

The primary key column of this table.

The language in which the translations of the given record is defined.
For example: de for German,
zh_CN for Chinese Simplified

The variable name of the parent BOM attribute. Key to
BomAttrDef.VariableName.

Orphan records of dirty BOM attribute variable names are ignored.
The translation of display name, corresponding to BomAttrDef . Name.

The translation of values of the attribute, corresponding to
BomAttrDef.Values

The variable name of the root BOM item.

Key to BomItemDef.VariableName of the root BOM item definition.

Orphan records of dirty root BOM item variable names are ignored.

70

APPENDIX G: BOM MAPPING CONFIGURABLE ARRAY ATTRIBUTE RESTRICTIONS

The following restrictions on configurable array attribute mapping are enforced, primarily to maintain one-to-one mapping between a row in the array set
and a BOM item.

Sequence Mapping

1

BOM Item
Mapping

BOM Item
Mapping

BOM Item
Mapping

BOM Item
Mapping

Rule

A BOM item mapping can use more than one
configurable array attribute, but they must be
all from the same array set.

A configurable array attribute should not be
used more than once in a single BOM item

mapping.

If two BOM item mappings use configurable
array attributes from the same array set, the
array attributes must be the same in both BOM
item mappings.

If two BOM item mappings use configurable
array attributes, the combination of array
attributes and values must be unique.

In other words, the same combination of
configurable array attributes and values cannot
be used to map to two different BOM items.

Sample Validation Error Message

The following example is illegal:
BOM1 |drinkType=Coffee|CarType=SUV

The BOM item mapping BOM1 is mapped from the following configuration array attributes in
different array sets: Drink, Car.

The following example is illegal:
BOM1 | DrinkType=Coffee|DrinkType=Tea

The configuration attribute DrinkType is used more than once in the BOM item mapping BOM1.

The following example is illegal:

BOM1 |drinkType=Coffee|drinkSize=Medium
BOM2 |drinkType=Tea

BOM item mapping BOM1 and BOM2 must be mapped from same configuration array
attributes from the same array set.

The following example is illegal:

BOM1 |drinkType=Coffee|drinkSize=Medium
BOM2 |drinkType=Coffee|drinkSize=Medium

BOM item mapping BOM1 and BOM2 are mapped from exactly same values for configuration
array attributes.

71

Sequence Mapping

5 BOM Item
Mapping

6 BOM
Attribute
Mapping

7 BOM
Attribute
Mapping

8 BOM
Attribute
Mapping

9 BOM
Attribute
Mapping

Rule

If a BOM item mapping uses a configuration
array attribute, it is illegal for one of its
hierarchical parent BOM item mapping
(including parent, grandparent, ...) to use
configurable array attributes (whether or not
from the same array set).

If an attribute mapping uses a configurable
array attribute, its containing BOM item
mapping must use at least one configurable
array attributes.

If an attribute mapping uses a configurable
array attribute, the containing BOM item
mapping must use one or more configurable
array attributes from the same array set.

Attribute mapping cannot use the same
configurable array attributes that are used in its
containing BOM item mapping.

If configurable array attributes are used in BOM
attribute mappings, the same array attributes
should be used in BOM attribute mappings of all
BOM item mappings that use the same
configurable array set. This is similar to Rule (3)
of BOM item mapping.

Sample Validation Error Message

The following example is illegal:

BOM1 |drinkType=Coffee
BOM2 (parent: BOM1) drinkSize=Medium

Configuration array attributes cannot be used in nested BOM item mapping. Configuration
attribute drinkSize is an array attribute, but BOM item mapping coffeeMapping, a hierarchical
parent, is already mapped with array attribute(s) drinkType.

The following example is illegal:

BOM1 | eventType=FundRaising (attribute mapping: drinkType=Coffee)

Cannot map to an array type configuration attribute drinkType as the parent BOM item
mapping is not mapped to an array type attribute.

The following example is illegal:
BOM1 | carType=SUV (attribute mapping: drinkType=Coffee)

Cannot map to a configuration attribute in the array set Car as its parent BOM item mapping
maps to an attribute in a different array set Dessert.

The following example is illegal:

BOM1 |drinkType=Coffee (attribute mapping: drinkType=Coffee)
Cannot map to the same array attribute drinkType as used in the parent BOM item mapping.
The following example is illegal:

BOM1 |drinkType=Coffee (attribute mapping: drinkSize=Medium)
BOM2 |drinkType=Tea (no attribute mapping)

Validation error will be added in a future release.

IMPORTANT: BOM Attributes can be mapped to both Configurable Array Attributes and non-array type Configurable Attributes.

72

APPENDIX H: BML FUNCTIONS FOR BOM MAPPING

The following BML functions to support the BOM Mapping feature: getbom, savebom, convertbomtoflat, and

convertbomtohier.

GET BOM BML FUNCTION

For fulfillment system integrations, the getbom function retrieves the saved Sales BOM or Manufacturing BOM

from a quote, to submit to the fulfillment system for order fulfillment.

For Subscription Ordering, the getbom function retrieves the saved Sales BOM from open orders.

Parameters bsId Integer
lineNumber Integer
lineFields String
validateBomModel Boolean
flattenChildItems | Boolean
isSalesBom Boolean

Syntax Json getbom(Integer bsId,

Boolean validateBomModel
isSalesBom]]]1])

Sample Input 514

lineNumber 2

getbom

Use this parameter to specify the Commerce Transaction ID.

Use this parameter to specify the document number of the model
line. The line number also represents the root BOM line in the
quote.

Use this parameter to identify additional line attributes fetched
from the quote ling, then stored in the returned BOM instance.

Optional, the default value is null if not provided.
Use this parameter to validate the returned BOM against the latest
BOM item definition. Validation will:

* Verify the BOM instance tree (parts and hierarchy) against the
BOM item definition.

¢ Populate the BOM item variable names.

e Correct the BOM instance hierarchy according to the latest
definition.

¢ Exclude items that no longer exist in the latest definition.

Optional, the default value is true if not provided.

Use this parameter to flatten child items and return all descendant
BOM items as direct children of the root BOM item.

Optional, the default value is false if not provided.

This parameter returns a Sales BOM if true, and a Manufacturing
BOM if false.

Optional, the default is true if not provided.

lineFields
Boolean

Integer lineNumber

[,

[,
Boolean flattenChildItems

Stringl[]
[,

L,

18430319

73

getbom
Sample Return (
"partNumber": "part49",
"quantity": 10,
"id": "BOM root",
"parentId": "",
"attributes": {},
"fields": {
" line bom level": "Q"
} 4
"explodedQuantity": 10,
"category": "sales",
"variableName": "root",
"definition": {
"SequenceNum": 814,
"ItemId": "814",
"ItemType": "Standard Item",
"Optional": "Y"
}y
"children": [
{
"partNumber": "part50",
"quantity": 5,
"id": "BOM text bom",
"parentId": "BOM root",
"attributes": {},
"fields": {
" line bom level": "1"
by
"explodedQuantity": 50,
"variableName": "text bom",
"definition": {
"SequenceNum": 815,
"ItemId": "815",
"ItemType": "Standard Item",
"Optional": "Y"

SAVE BOM BML FUNCTION

The savebom function saves a BOM into a quote without Configuration attributes and returns the document
number of the saved quote. For Subscription Ordering, the savebom function saves discontinued assets into a
guote.

savebom

Parameters bsID Integer | Use this parameter to specify the Commerce Transaction ID.
bomJson JSON Use this parameter to hold the BOM instance JSON data.
Syntax Integer savebom(Integer bsId, Json bomJson)

Sample Input bsId 18430319

bomJson {
"partNumber": "part49",
"id": "BOM root",
"quantity": 10,
"parentId": "",
"attributes": {},
"fields": {" line bom level": "O0"},
"explodedQuantity": 10,
"category": "sales",
"variableName": "root",
"definition": {
"SequenceNum": 814,
"ItemId": "814",
"ItemType": "Standard Item",
"Optional": "Y"
}, "children": [{
"partNumber": "part50",
"quantity": 5,
"id": "BOM text bom",
"parentId": "BOM root",
"attributes": {},
"fields": {" line bom level”: "1"},
"explodedQuantity": 50,
"variableName": "text bom",
"definition": {
"SequenceNum": 815,
"ItemId": "815",
"ItemType": "Standard Item",
"Optional": "Y"

Sample Return 5

75

GET CONFIGURATION BOM BML FUNCTION

Retrieves the configbom stored via the saveConfigBom API and the configBom created via an external client
application Configurator Ul session. The library function extracts and returns a client integration BOM instance
from the CPQ Cloud configBomInstance resource using the "configld".

getConfigbom

Parameters configId Integer The Configuration ID for the client side integration action
This is not the same as the configuration_id system attribute.

e For Ul integrations, the client side integration action
returns the config_id in the response JSON.

e For other actions such as Terminate, Renew, Suspend,
and Resume order, RESTful calls generated from the
saveBomConfig BML function return the lineld.

flattenChildProducts | Boolean | Use this parameter to flatten child items and return all
descendant BOM items as direct children of the root BOM
item.

Optional, the default value is false if not provided.

Syntax getconfigbom(configId [, flattenChildProducts])

SAVE CONFIGURATION BOM BML FUNCTION

Allows users to save the BOM for non-configurator Ul integration scenarios such as suspend, resume, and
terminate. The library function saves a client integration BOM instance and a "configld" to the CPQ Cloud
configBomlInstance resource and returns a "configld".

saveConfigbom
Parameters | -onfigBomJson JSON The configuration BOM JSON to save.

Syntax getconfigbom(configId [, flattenChildProducts])

Return configId Integer | The Configuration Id for the client side integration action.

76

CONVERT A HIERARCHICAL BOM INTO A FLATTENED BOM BML FUNCTION

The convertbomtoflat function converts a hierarchical BOM into a flattened BOM. A flat BOM stores all
descendants as direct children, including children, grandchildren, etc. Flattened BOMs are easier to process.

IMPORTANT: The input "bomlJson" is not modified and will remain in a hierarchical BOM format.

convertbomtoflat

Parameter bomJson JSON Use this parameter to hold the JSON target.
Syntax Json convertbomtoflat (Json bomJson)
Sample Input bomJson {"partNumber":"partl",

"quantity":1,

"id":"Boml",

"parentIid":"",

"children": [
{"partNumber":"part2",
"quantity":2,"id":"Bom2",
"parentId":"","children": [

{"partNumber":"part4",
"quantity":4,
"id":"Bom4",
"parentId":""
}I
{"partNumber":"partb",
"quantity":5,
"id":"Bom5",
"parentIid":""

}

3y
{"partNumber":"part3",
"quantity":3,

"id" : "Bom3 ",
"parentId":""

}

77

Sample Return

{

convertbomtoflat

"partNumber": "testbed:systemConfiguration:rootSystem",
"quantity": 1,
"isModel": true,

"id": "BOM SysConfigRoot",

"parentId": "",

"explodedQuantity": 1,

"category": "sales",

"children": [{
"partNumber":

"testbed:systemConfiguration:conditionalChildren",
"quantity": 1,
"isModel": true,
"id": "BOM SysConfigNestKid3",
"parentId": "BOM SysConfigNest",
"explodedQuantity": 1
oo A
"partNumber": "testbed:systemConfiguration:noBOMRule",
"quantity": 1,
"isModel": true,
"id": "BOM SysConfigNestKid2",
"parentId": "BOM SysConfigNest",
"explodedQuantity": 1
oo A
"partNumber":
"testbed:systemConfiguration:differentConfiguration",

y

"quantity": 1,

"isModel": true,
"id": "BOM SysConfigNestKidl",
"parentId": "BOM SysConfigNest",

"explodedQuantity": 1

{

"partNumber": "testbed:systemConfiguration:nestedHierarchies"
"quantity": 1,

"isModel": true,

"id": "BOM SysConfigNest",

"parentId": "BOM SysConfigRoot",

"explodedQuantity": 1

78

CONVERT A FLATTENED BOM INTO A HIERARCHICAL BOM BML FUNCTION

The convertbomtohier function converts a flattened BOM into a hierarchical BOM. Occasionally, administrators
flatten hierarchical BOMs for easier processing; this function returns the processed flattened BOM back into a
hierarchical BOM.

IMPORTANT: The input "bomlJson" is not modified and will remain in a hierarchical BOM format.

convertbomtohier
Parameter bomJson | JSON data type Use this parameter to hold the JSON target.

Syntax Json convertbomtohier (Json bomJson)

Sample Input bomJson | {
"partNumber": "partl",
"quantity": 1,
"id": "Boml",
"parentId": "",
"children": [{
"partNumber": "part2",
"quantity": 2,
"id": "Bom2",
"parentId": "Boml"
oo A
"partNumber": "part3",
"quantity": 3,
"id": "Bom3",
"parentId": "Boml"
oo A
"partNumber": "part4",
"quantity": 4,
"id": "Bom4",
"parentId": "Bom2"
oo A
"partNumber": "part5",
"quantity": 5,
"id": "Bomb",
"parentId": "Bom2"

79

convertbomtohier

Sample {
Return "partNumber": "testbed:systemConfiguration:rootSystem",
"quantity": 1,
"isModel": true,
"id": "BOM SysConfigRoot",
"parentId": "",
"explodedQuantity": 1,
"category": "sales",
"children": [{
"partNumber": "testbed:systemConfiguration:nestedHierarchies",
"quantity": 1,
"isModel": true,
"id": "BOM SysConfigNest",
"parentId": "",
"explodedQuantity": 1,
"children": [{
"partNumber":
"testbed:systemConfiguration:conditionalChildren",
"quantity": 1,

"isModel": true,
"id": "BOM SysConfigNestKid3",
"parentIid": "",

"explodedQuantity": 1

b A
"partNumber": "testbed:systemConfiguration:noBOMRule",
"quantity": 1,
"isModel": true,
"id": "BOM SysConfigNestKid2",
"parentId": "",
"explodedQuantity": 1

boo A
"partNumber":

"testbed:systemConfiguration:differentConfiguration",

"quantity": 1,

"isModel": true,
"id": "BOM SysConfigNestKidl",
"parentId": "",

"explodedQuantity": 1

APPENDIX I: BML FUNCTIONS FOR SYSTEM CONFIGURATION

The following BML functions are used to retrieve System Configuration attribute values from other configured models
within the system. These BML functions are available in Library functions, Util libraries, Configuration Advanced rules,
Commerce Advanced rules, Step Transitions, Advanced Step Notifications, and mass update of Transactions.

IMPORTANT:

¢ These functions should only be used with System Configurations. System Configurations are BOM hierarchies that
contain one or more nested child models.

e BML functions getSystemMultipleAttrValues, getSystemAttrValues, getSystemData will not return the
value of HTML attributes. This behavior is consistent with other configuration rules that do not allow the selection of
HTML attributes.

GET SYSTEM DATA BML FUNCTION

This BML function returns a JSON object representing the entire System Configuration for the current Transaction.

getSystemData
Syntax Json getsystemdata ()
Example systemdson = json{();
systemJson = getsystemdatal();
IMPORTANT:

¢ When not in the context of a Transaction, an empty JSON object is returned.
¢ If System Configuration Data does not exist, an empty JSON object is returned.
¢ This function will also return an empty JSON object if a System Configuration has not yet been configured.

¢ The empty JSON object should be handled accordingly.

GET SYSTEM ATTRIBUTES VALUES BML FUNCTION

This BML function returns a string containing a single attribute's values from a System Configuration.
getSystemAttrValues

Parameter JjsonPath |String |A string containing the JSON path

Syntax getsystemattrvalues (String jsonPath)
Example modelValue = Stringl[];
modelValue = getsystemattrvalues ("$.configAttributes.attributeVarname");

IMPORTANT:
¢ |f the JSON Path does not return an array of single values, empty string array ("[]") will be returned.

¢ The function will also return empty values for any models that are yet to be configured and paths that do not return
values. The empty array should be handled accordingly.

81

GET SYSTEM MULTIPLE ATTRIBUTE VALUES BML FUNCTION

This BML function returns dictionary key and value string arrays containing attribute values from a System
Configuration.

getSystemMultipleAttrValues

Parameter |Dictionary with String keys and String values. The values are expected to be JsonPath Expressions.
e The key should be an identifier for the attributes identified in the associated value.

e The values are expected to be JSON Path expressions that identify the location of the attribute in the
fully expanded system definition (BOM).

Syntax Dictionary<String[]> getsystemmultipleattrvalues (Dictionary<String>)

Return Returns a Dictionary (key: String, value: String[]) containing attribute values from a System Configuration.
e The keys will be the identifiers provided in the input Dictionary.

e The values will be the configured attribute values of the attribute(s) at the JSON Path expressions
associated with the input key.

Example jsonPaths = dict ("string");
put (jsonPaths, "attributeVarname", "$.configAttributes.attributeVarname");
put (jsonPaths, "childAttributeVarname",
"$.children[*].configAttributes.childAttributeVarname") ;

interModelValues dict ("string[]");
interModelValues = getsystemmultipleattrvalues (jsonPaths);

values = Stringl[];
get (interModelValues, "attributeVarname");

values

IMPORTANT:
¢ If a JSON Path does not return an array of single values, that key-value pair will result in an empty array.

¢ The function will return empty arrays for models that have not been configured and paths that do not return values.
The empty arrays should be handled accordingly.

82

APPENDIX J: BOM JSON OBJECTS AND EXAMPLES

BOM ITEM JSON OBJECT

The following table describes BOM Item fields in the JSON object.

Field
id

variableName

category

effectiveDate

parentId

partNumber

quantity

isModel

explodedQuantity
children

attributes

definition

fields

Data Type

String

String

String

String

String

String

Long

Boolean

Long
Array

Object

Object

Object

Required Description

N

N

The instance id of the BOM item.

The variable name of the BOM Item Definition.

Required when BML-based rules are used to create the BOM
instance during Configuration.

Legal values: sales, manufacturing.

Designates if a BOM is a Sales BOM or a Manufacturing BOM.
Applicable to the root BOM item only.

The effective date. In ISO format yyyy-MM-ddTHH:mm:ssZ.
Applicable to the root BOM item only.

The parent BOM item instance id. The field is not defined unless
children items are flattened.

The Part Number of the item.

e Asales item exists in the CPQ Parts Database and the back-end
fulfillment system with the same Part Number.

e A manufacturing item only exists in the back-end fulfillment
system; it is not required in the CPQ Parts Database.

The line item quantity

Specifies if the BOM item is a model item. Used in the output BOM
item instance for system configuration. The flag does not need to be
explicitly set in BOM mapping BML.

The exploded line quantity
The child BOM items. A JSON array of BOM items.

A JSON object that stores the BOM attributes. The format is defined
in the BOM Attributes section.

Additional BOM Item Definition items required when submitting
BOMs to back-end fulfillment systems, including SequenceNum,
Itemld, ItemType, Optional, and IncludedinBasePrice. The node is
populated in the output BOM instance for BOM item mapping and
the getBOM BML function when either validateBomModel is true or
isSalesBom is false. Do not explicitly populate this node in the BOM
mapping BML.

Optional fields for ABO. The JSON object stores fields as key-value
pairs. If a BOM is saved to a quote, the fields are mapped to line
attributes. Field names must be line attribute variable names.

83

BOM ITEM ATTRIBUTE JSON OBJECT

The attributes of BOM items are represented by a single JSON object. Commerce sub document lines also use this
format to store the BOM attributes in the line attribute (_line_bom_attributes).

The field name is the BOM attribute Variable Name. The following table defines the BOM attribute values

Field Data Type Required Description
value * String N If the data type is String, the value is in the site base language.
* Integer If the data type is Date, the value is stored in the JSON object asa as a
« Number String using the ISO date time format
« Boolean yyyy—-MM-ddTHH:mm: ssZ.
* Date
* null
displayValue |String N The display value of the attribute, in the site base language
label String N Attribute (display) name, in the site base language.
translations | Object N A JSON object represents the translation of attributes in the site non-

base language. The language code is the field name.

{ "de": {"label": xxx, "displayValue": xxx},
"fr":{"label": xxx, "displayValue":xxx}}

CPQ provides translation of values when the attribute is a menu type
and the data type is a String. Other data types are not translated.

BOM INSTANCE JSON EXAMPLE

The following example displays the JSON object for a sample BOM instance.

"id": "7345ABCDE",
"variableName": "BM54888-0",

"partNumber": "BM54888",

"quantity": 1,

"definition": {"SequenceNum": 20, "ItemId": "EBS56321", "ItemType": "Optional Class"},
"fields": {" price list price each": 99.12, "line action code": "Update"},

//Optional fields injected

"attributes": {
"size": { //The attribute variable name

"value": "L", //The attribute value in the site base language
"displayValue": "Large", //The attribute display value in the site base language
"label": "Size", //The attribute display name in the site base language
"translations": {
"de": { "label": "GroBe", "displayValue": '"groRl" },
"en": { "label": "Size", "displayValue": "Large" }
}
}l
"instruction": {
"value": "Leave the package at the door.",
"label™: "Special Instruction",
"translations": {
"de": {"label": "Spezialanweisung"},
// Only the label is translated, as the attribute is not a menu type.
"en": { "label": "Special Instruction" }
}
}
}I
"children": [

{
"variableName": "BM54888-1",
"partNumber": "PT13345"
"quantity": 1,
"children": []

b

"variableName": "BMDSK781-4",
"partNumber": "DSK781-4",
"quantity": 1

IMPORTANT: // is used to add comments in the JSON object for explanation only. JSON does not formally support
comments.

85

APPENDIX K: WEB SERVICES FOR BOM MAPPING

GET CONFIGURATION INSTANCE REST API

This operation will use one of the following identifiers to retrieve a saved Configuration BOM Instance:
e The lineld returned from a Terminate, Suspend, Resume, or Renew service

e The config_id returned by client side JSON object for client integration case.

IMPORTANT: Get Configuration Instance is only available for external integrations.

Get Configuration Instance

URI Endpoint /rest/v6/configBomInstance/{config Id}/actions/getConfigBom
Endpoint Parameters | config Id The Configuration BOM Instance Id
HTTP Method POST

Request Parameters flattenHierachy | True | Returns a flattened BOM structure True is the default value.

False | Returns a hierarchical BOM structure

Response Parameters | JSON data containing the saved Configuration BOM instance

URI Endpoint Sample

https://sitename.oracle.com/rest/v6/configBomInstance/36503159/actions/getConfigBom

Sample Request

{

"flattenHierarchy": "true"

86

Sample Response

{

"configBom": {
"partNumber": "partl",
"quantity": 3,
"explodedQuantity": 3,

"category": "sales",
"id": "abo 3cf6636c-9119-4960-b185-dl3daee2631d",
"fields": {
" price unit price each": "3.0",
"oRCL ABO ActionCode 1": "NO_ UPDATE",
"fulfillmentStatus 1": "CREATED",
" is line item mandatory": true,
"itemInstanceName 1": "partl-36503087-1",
"itemInstanceId 1": "abo 3cf6636c-9119-4960-bl185-dl3daee2631d"
1y
"parentId": "",
"children": [
{
"partNumber": "part22",

"quantity": 1,

"explodedQuantity": 6,

"id": "abo cdfd49b4-b500-4e11-84e7-3739d1£2625£f",
"fields": {

" price unit price each": "US Dollar price not defined.",
"ORCL ABO ActionCode 1": "NO UPDATE",
" is line item mandatory": true,
"itemInstanceName 1": "part22-36503087-13",
"itemInstanceId 1": "abo cdfd49b4-b500-4el11-84e7-3739d1£f2625£f"
b
"parentId": "abo d37e0168-c455-4748-af6c-da3fa2c0996c"
"partNumber": "part222",

"quantity": 1,

"explodedQuantity": 6,

"id": "abo e3ddd440-6928-4231-88b2-3c6d3edlc09f",
"fields": {

" price unit price each": "US Dollar price not defined.",
"ORCL ABO ActionCode 1": "NO UPDATE",

" is line item mandatory": true,

"itemInstanceName 1": "part222-36503087-12",
"itemInstanceId 1": "abo e3ddd440-6928-4231-88b2-3c6d3edlc09£f"

by
"parentId": "abo d37e0168-c455-4748-af6c-da3fa2c0996c"

87

CONFIGURATION SOAP APl SUPPORT FOR BOM MAPPING

The optional bomprice element is available for the Configuration SOAP API (vl and v2). The response includes
the BOM price for sites using BOM Mapping if the BOM price is not zero.

Sample Response:

<bm:price>
<bm:bomPrice>$16.0000</bm:bomPrice>
<bm:totalPrice>$45.0000</bm:totalPrice>
</bm:price>

The web service WSDL, upon regeneration, includes the newly introduced "bomPrice"
optional element:

<xsd:complexType name="ConfigurationPriceType">

<xsd:sequence>

<xsd:element maxOccurs="1" minOccurs="0" name="bomPrice" nillable="true"
type="xsd:string"/>

<xsd:element maxOccurs="1" minOccurs="1" name="totalPrice" nillable="false"
type="xsd:string"/>

</xsd:sequence>

</xsd:complexType>

88

®; Oracle is committed to developing practices and products that help protect the enviror

Copyright © 2018 Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected
by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce,
translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report
them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government,
then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal
Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, shall be subject
to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for
use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware
in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous
applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are
trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or
registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products, and services from third parties.
Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content,
products, and services unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not
be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Integrated Cloud Applications & Platform Services

	BOM Mapping Implementation Guide
	Revision History
	Introduction
	Purpose
	Prerequisites
	Scope

	BOM Mapping Overview
	BOM Mapping Tables
	BOM Item Definition Table
	BOM Item Mapping Table
	BOM Attribute Definition Table
	BOM Attribute Mapping Table
	BOM Attribute Translation Table

	BOM Table Relationships
	BOM Mapping Use Cases
	BOM Mapping Functional Overview
	Basic BOM Mapping Process Flows
	Full-Service BOM Mapping Process Flows

	BOM Mapping Configuration Rules
	BOM Item Configuration Rules
	Configuration BOM Item Mapping
	Reconfiguration BOM Item Mapping

	BOM Attribute Configuration Rules
	BOM Mapping Rule Execution
	Effective Dates
	Mapping to Single Select Pick List Attributes

	BOM Instance
	Sales and Manufacturing BOMs
	Capture a BOM Instance in Commerce Transactions
	Structure
	Quantity
	Model Quantity and Pricing

	Save a BOM Instance to a Quote

	Implementing BOM Mapping
	Capture BOM Definitions in CPQ BOM Data Tables
	Activate BOM Tables
	Map BOM Data Tables to CPQ BOM Platform Tables
	Validate BOM Definitions
	BOM with Models as Children
	Validation Errors
	BOM Mapping with Two Validation Errors
	Validation Error in BOM Hierarchy with Models as Children

	Create BOM Mapping Configuration Rules
	Define Simple Table-based Configuration Rules
	Validate Table-based BOM Mapping Rules
	Mapping to Configurable Array Attributes
	BOM Item Mapping for Configurable Array Attributes
	BOM Attribute Mapping for Configurable Array Attributes
	Reconfiguration of Configurable Array Attributes

	Define Advanced BML-based Configuration Rules
	From Configuration to BOM
	Read and Update BOM Items Sample
	Add a BOM Item Sample
	Create a Root BOM from Scratch Sample
	Delete a BOM Item Sample
	Add a BOM Attribute Sample
	Configurable Array Attributes Sample
	Manufacturing BOM vs Sales BOM
	JSON Path Functions

	From BOM to Launch Configurations
	Override Simple Configurable Attributes Sample
	Override Configurable Array Attributes Sample

	Referencing BOM Items
	BOM Item Definition Tree References
	BOM Item Mapping Tree References

	BML Functions to Extract Sales and Manufacturing BOMs
	Advanced Settings
	Disable Auto Updates
	Set Row Count per Page

	Appendix A: BOM Mapping System Attributes
	Appendix B: BOM Item Definition Table Schema
	Define Parts and Models as Child Item in the BOM Hierarchy
	Model Path Format
	"Option Class" BOM Item Type

	Appendix C: BOM Item Mapping Table Schema
	Multiple Attribute Mapping for BOM Mapping Items
	Additional Configurable Attributes for BOM Item Mapping
	Configurable Attribute Columns in the BOM Item Mapping Data Table
	View BOM Item Mapping Administration Pages

	Appendix D: BOM Attribute Definition Table Schema
	Appendix E: BOM Attribute Mapping Table Schema
	Appendix F: BOM Attribute Translation Table Schema
	Appendix G: BOM Mapping Configurable Array Attribute Restrictions
	Appendix H: BML Functions for BOM Mapping
	Get BOM BML Function
	Save BOM BML Function
	Get Configuration BOM BML Function
	Save Configuration BOM BML Function
	Convert a Hierarchical BOM into a Flattened BOM BML Function
	Convert a Flattened BOM into a Hierarchical BOM BML Function

	Appendix I: BML Functions for System Configuration
	Get System Data BML Function
	Get System Attributes Values BML Function
	Get System Multiple Attribute Values BML Function

	Appendix J: BOM JSON Objects and Examples
	BOM Item JSON Object
	BOM Item Attribute JSON Object
	BOM Instance JSON Example

	Appendix K: Web Services for BOM Mapping
	Get Configuration Instance REST API
	Configuration SOAP API Support for BOM Mapping

