

CPQ Cloud BOM Mapping

CPQ Cloud Release 18B

Implementation Guide

TABLE OF CONTENTS

REVISION HISTORY ... 4
INTRODUCTION ... 5

Purpose .. 5
Prerequisites... 5
Scope .. 5

BOM MAPPING OVERVIEW ... 6
BOM Mapping Tables .. 8

BOM Item Definition Table ... 9
BOM Item Mapping Table .. 9
BOM Attribute Definition Table ... 10
BOM Attribute Mapping Table ... 11
BOM Attribute Translation Table ... 12

BOM Table Relationships ... 13
BOM Mapping Use Cases ... 14
BOM Mapping Functional Overview .. 15

Basic BOM Mapping Process Flows .. 15
Full-Service BOM Mapping Process Flows .. 16

BOM MAPPING CONFIGURATION RULES ... 19
BOM Item Configuration Rules ... 19

Configuration BOM Item Mapping ... 19
Reconfiguration BOM Item Mapping ... 20

BOM Attribute Configuration Rules .. 21
BOM Mapping Rule Execution .. 21
Effective Dates.. 22
Mapping to Single Select Pick List Attributes ... 22

BOM INSTANCE ... 23
Sales and Manufacturing BOMs ... 23
Capture a BOM Instance in Commerce Transactions .. 23

Structure ... 23
Quantity .. 25
Model Quantity and Pricing .. 25

Save a BOM Instance to a Quote .. 25
IMPLEMENTING BOM MAPPING ... 26

Capture BOM Definitions in CPQ BOM Data Tables .. 27
Activate BOM Tables ... 28
Map BOM Data Tables to CPQ BOM Platform Tables ... 28
Validate BOM Definitions .. 30

BOM with Models as Children ... 30
Validation Errors.. 31

BOM Mapping with Two Validation Errors .. 31
Validation Error in BOM Hierarchy with Models as Children .. 33

Create BOM Mapping Configuration Rules ... 35
Define Simple Table-based Configuration Rules .. 36

Validate Table-based BOM Mapping Rules ... 37
Mapping to Configurable Array Attributes .. 38

BOM Item Mapping for Configurable Array Attributes .. 38
BOM Attribute Mapping for Configurable Array Attributes ... 40
Reconfiguration of Configurable Array Attributes .. 42

Define Advanced BML-based Configuration Rules ... 43
From Configuration to BOM .. 43

Read and Update BOM Items Sample .. 44
Add a BOM Item Sample .. 45
Create a Root BOM from Scratch Sample .. 46
Delete a BOM Item Sample .. 47
Add a BOM Attribute Sample ... 48
Configurable Array Attributes Sample.. 49
Manufacturing BOM vs Sales BOM .. 50
JSON Path Functions .. 50

From BOM to Launch Configurations .. 51
Override Simple Configurable Attributes Sample ... 52
Override Configurable Array Attributes Sample ... 53

Referencing BOM Items ... 54
BOM Item Definition Tree References ... 54
BOM Item Mapping Tree References ... 54

BML Functions to Extract Sales and Manufacturing BOMs ... 55
Advanced Settings ... 55

Disable Auto Updates .. 55
Set Row Count per Page .. 55

APPENDIX A: BOM MAPPING SYSTEM ATTRIBUTES .. 56
APPENDIX B: BOM ITEM DEFINITION TABLE SCHEMA ... 57

Define Parts and Models as Child Item in the BOM Hierarchy ... 59
Model Path Format ... 59
"Option Class" BOM Item Type ... 59

APPENDIX C: BOM ITEM MAPPING TABLE SCHEMA .. 61
Multiple Attribute Mapping for BOM Mapping Items .. 62

Additional Configurable Attributes for BOM Item Mapping ... 62
Configurable Attribute Columns in the BOM Item Mapping Data Table ... 63
View BOM Item Mapping Administration Pages ... 64

APPENDIX D: BOM ATTRIBUTE DEFINITION TABLE SCHEMA .. 67
APPENDIX E: BOM ATTRIBUTE MAPPING TABLE SCHEMA ... 68
APPENDIX F: BOM ATTRIBUTE TRANSLATION TABLE SCHEMA ... 70
APPENDIX G: BOM MAPPING CONFIGURABLE ARRAY ATTRIBUTE RESTRICTIONS ... 71
APPENDIX H: BML FUNCTIONS FOR BOM MAPPING ... 73

Get BOM BML Function .. 73
Save BOM BML Function .. 75
Get Configuration BOM BML Function ... 76
Save Configuration BOM BML Function .. 76
Convert a Hierarchical BOM into a Flattened BOM BML Function .. 77
Convert a Flattened BOM into a Hierarchical BOM BML Function .. 79

APPENDIX I: BML FUNCTIONS FOR SYSTEM CONFIGURATION ... 81
Get System Data BML Function .. 81
Get System Attributes Values BML Function ... 81
Get System Multiple Attribute Values BML Function .. 82

APPENDIX J: BOM JSON OBJECTS AND EXAMPLES .. 83
BOM Item JSON Object .. 83
BOM Item Attribute JSON Object ... 84
BOM Instance JSON Example ... 85

APPENDIX K: WEB SERVICES FOR BOM MAPPING .. 86
Get Configuration Instance REST API .. 86
Configuration SOAP API Support for BOM Mapping ... 88

4

REVISION HISTORY

This document will continue to evolve as existing sections change and new information is added. All updates

appear in the following table:

Date What's Changed Notes

JUNE 2018 Initial Document Creation

5

INTRODUCTION

The new Bill of Materials (BOM) Mapping feature, introduced in CPQ Cloud 2016 R1, allows administrators to

import multi-level BOM product structures for use in CPQ Configuration, Commerce transactions, and

downstream integration of orders to an Enterprise Resource Planning (ERP) system. This data-driven solution

significantly reduces the amount of time needed to set up and maintain integrations of configured products with

ERP systems using new BOM tables and a new BOM Mapping rule type.

The BOM Mapping feature delivers the ability to:

 Capture BOM item definitions in CPQ Data Tables. Use existing Data Table migration or upload features

to import BOM item definitions from fulfillment systems.

 Map Configuration attributes to the resulting BOM items. Use simple Table-Based rules, advanced BML-

Based Rules, or both to accomplish BOM Mapping.

 Create and reconfigure transaction lines from Configuration selections using BOM Mapping rules.

 Generate a Sales or Manufacturing BOM for integration with downstream fulfillment systems.

IMPORTANT:

 BOM Mapping is used in Subscription Ordering and System Configuration, and is a prerequisite for using

those features.

 Implementing BOM Mapping requires advanced knowledge of CPQ Configuration and fulfillment system

configuration models.

PURPOSE

The CPQ Cloud BOM Mapping Implementation Guide describes BOM Mapping functionality and provides

instructions for implementing BOM Mapping.

PREREQUISITES

BOM Mapping Implementation is available on CPQ Cloud sites on 2016 R1, or later. Some features described in

this guide are only available in 18B, or later.

SCOPE

This implementation guide is divided into the following sections:

 BOM Mapping Overview - describes BOM Mapping functionality and BOM Mapping Use Cases.

 BOM Mapping Configuration Rules - explains BOM Mapping Configuration rules and provides

information about rule execution.

 BOM Instance - describes the BOM Instance and saving a BOM Instance to Commerce transactions and

quotes.

 Implementing BOM Mapping - provides instructions for implementing and validating BOM Mapping.

 Reference Information - describes BOM Mapping System Attributes, Table Schema, BML functions, and

JSON objects.

6

BOM MAPPING OVERVIEW

Fulfillment systems often maintain bills of material (BOMs) containing complex, multi-level part structures that

differ from the Configuration attributes used in CPQ Cloud when sales users configure products. CPQ Cloud

provides an external, sales-oriented, guided selling view of products that focuses on the customer’s needs and

perceived value for the product. In contrast, fulfillment and ERP systems provide an internal, manufacturing or

production oriented view of products. An example of this difference can be seen in eCommerce sites selling

computer laptops.

 In CPQ Cloud, a customer may initially be asked, "What do you want to do with your laptop?" and

presented with different options (i.e. business, gaming, video, and media). The selected option will

result in the user being asked different additional questions concluding with a laptop configuration

bundle that will meet their needs.

 In a fulfillment system, the guide that is used to design and assemble a laptop typically contains

hundreds of parts and options that are crucial to assembling and sourcing the product components, but

are not meaningful to the customer.

The BOM Mapping feature provides a data-driven mechanism for mapping these differing product views.

As illustrated in the image below, BOM Mapping enables administrators to associate their fulfillment system

BOMs to an Oracle CPQ Cloud Configuration. The product structures are stored in BOM definition tables.

Administrators map tables and setup BOM Configuration rules to link the BOM definitions to the CPQ Cloud

Configuration attribute selections.

When a customer generates a quote, CPQ uses BOM Mapping rules to create a BOM instance. The BOM

instance represents a hierarchy of Commerce transaction lines, containing the BOM items and attributes

associated with Configuration selections. CPQ can then use the new getBOM function to send the Sales or

Manufacturing BOM to an ERP system for order fulfillment.

BOM Mapping Overview

7

HIERARCHICAL RELATIONSHIPS IN BOM MAPPING

A central component of the BOM Mapping feature is the capture of BOM product structure hierarchies in CPQ

Cloud for reference by the BOM Mapping rules. The following example illustrates how these hierarchical parent-

child relationships are stored.

The BOM tree, shown in the following image, contains root part LP94777 (i.e. a CPQ model) and four parent

parts (LAPPRO1101, LAPPRO1109, BP3000, and EXT1000). Parent part BP3000 has three children (BP3025,

BP3050, and BP3075), and EXT1000 has two children (EXT2000 and EXT3000) and four grandchildren (EXT2001,

EXT2002, EXT3001, and EXT3002).

The CPQ BOM Data Table represents this tree using columns that store the item variable name, the parent item

variable name, and the root item variable name.

 For LAPPRO1101, the parent item and root item are both LP94777.

 For BP3025, the parent item is BP3000. The root item is LP94777.

 For EXT2001, the parent item is EXT2000. The root item is still LP94777.

IMPORTANT: Continue this pattern to support unlimited levels of parent-child relationships, allowing the

representation of very complex multi-level BOM structures.

BOM Tree Example

8

BOM MAPPING TABLES

CPQ Cloud provides five BOM Mapping platform tables to support the full BOM Mapping solution: BOM Item

Definition, BOM Item Mapping, BOM Attribute Definition, BOM Attribute Mapping, and BOM Attribute

Translation. Many customers may only require one or two of these tables to implement their use cases.

The BOM Mapping platform tables contain the schema for associating BOM structures to Configuration attribute

values. Customer-specific mapping details are stored in CPQ Cloud Data Tables. The combination of these two

sets of tables enables administrators to create simple Table-Based Configuration rules to associate fulfillment

system BOMs, CPQ Configuration attributes, and Commerce transaction lines without the need for BML or other

logic.

Administrators upload or migrate BOM structures to CPQ Data Tables using CPQ Cloud’s standard importing

features. These Data Tables can then be linked to the corresponding BOM Mapping platform tables for use in

BOM Mapping rules, as shown in the illustration below.

BOM Data Table to BOM Platform Table Mapping

CPQ Cloud provides standard, downloadable Data Table definitions that can be used to create the

implementation-specific tables, which map automatically to the BOM Mapping platform tables. Alternatively,

customers can reuse existing Data Tables containing BOM structure details by mapping the columns in their

tables to the BOM Mapping platform tables. The new Edit BOM Table Definition page provides drop-down

menus for column mapping and Data Table definitions for download.

IMPORTANT: Administrators must activate the required BOM Mapping platform tables, and populate BOM

Mapping Data Tables prior to BOM Mapping.

9

BOM ITEM DEFINITION TABLE

The BOM Item Definition Table stores the BOM hierarchical relationships used in the fulfillment system, along

with item variable references, which recursively link child items to parent items. In addition to the hierarchical

information, BOM definition tables also store other information from the fulfillment BOM, such as:

 Fulfillment system IDs

 Default quantity

 Whether an item is optional, a sales item, or a manufacturing item

 BOM item effective dates

Refer to the BOM Item Definition Table Schema for an explanation of all table fields.

IMPORTANT: The BOM Item Definition table is the key component of BOM Mapping and is the only required

table for all use cases. For examples of when these tables are used, refer to BOM Mapping Use Cases.

BOM ITEM MAPPING TABLE

The BOM Item Mapping Table associates BOM items to Configuration attributes. Activating this table enables

simple Table-Based BOM Mapping Configuration rules. If this table is not active, administrators would use

advance BML-Based Rules to establish the association between BOM items and Configuration attributes. Error!

Reference source not found. shows the how the BOM Item Mapping Data Table “ConfigAttrVarName” and

“ConfigAttrValue” items relate to the Configuration attributes.

BOM Item Mapping Example

Refer to the BOM item Mapping Table Schema for an explanation of all table fields.

10

BOM ATTRIBUTE DEFINITION TABLE

The BOM Attribute Definition Table stores attribute definitions and attribute effective dates from the fulfillment

system. These attributes can define options, such as color or size. BOM item variable references associate the

fulfillment system attributes with the applicable BOM items. For Example: In the following image, BOM

attributes “BSO3901” and “BSN3903” reference “BP3025” in the “BomItemVarName” field. This field references

the “VariableName” field in the BOM Item Definition table, which establishes the association of BOM attributes

to BOM items.

BOM Attribute Definition Example

Refer to the BOM Attribute Definition Table Schema for an explanation of all table fields.

11

BOM ATTRIBUTE MAPPING TABLE

The BOM Attribute Mapping Table stores associations between BOM attributes, Configuration attributes,

Commerce transaction line attributes, and quantity values. Setting up the BOM Attribute Mapping table enables

simple Table-based BOM Mapping Configuration rules to be used to associate BOM attributes to CPQ

Configuration and Commerce items.

The BOM Attribute Mapping table identifies describes BOM Attribute Mapping Target Types.

 BOM_ATTRIBUTE - Maps to a BOM attribute. Attributes that are not defined in the BOM Attribute

Definition are ad hoc BOM attributes.

 LINE_ATTRIBUTE - Maps to a Commerce line attribute. The line attribute must exist in the target

Commerce process.

 QUANTITY - Maps to the BOM line item quantity.

The Source Type field sets the source behavior, and there are three types:

 STATIC_ENTRY - The target is always set to the value in the source Static Entry.

 CONDITIONAL_STATIC_ENTRY - The target is set to the value in the Static Entry if the selected

Configuration attribute matches the Configuration attribute value.

 CONFIG_ATTRIBUTE - The target is set to the value of the selected Configuration attribute.

Refer to the image below for the following examples:

 The first line sets the “BSO3901” BOM attribute value to the value selected for the Configuration

“batteryOrientation” attribute.

 The second line entry sets the quantity to the value entered for the Configuration

“numberofBatteryPack” attribute.

 The third line sets the “LPSColorCode” BOM attribute value to “R”, if the selected Configuration

“sleeveColor” attribute value is “Red”.

BOM Attribute Mapping Example

BEST PRACTICE RECOMMENDATION: Maintain a 1-to-1 mapping between a Target line or BOM Attribute value

and a Source Configuration attribute value.

Refer to the BOM Attribute Mapping Table Schema for an explanation of all table fields.

12

BOM ATTRIBUTE TRANSLATION TABLE

The BOM Attribute Translation Table associates translations for the applicable attributes. BOM attribute variable

references associate the fulfillment system translation with the applicable attributes.

IMPORTANT:

 Only attribute mappings with BOM_ATTRIBUTE as the target type are translated.

 All translations are included in JSON files, not just the user's preferred language.

As shown in the following image, the BOM Attribute Translation table provides three translations for BOM

Attribute variable “BSO3901”: zh_CN – Chinese (Simplified), ja_JP - Japanese, and de – German.

BOM Attribute Translation Example

BEST PRACTICE RECOMMENDATION: When providing attribute translations, Single Select Menu and Multi-

Select Menu attributes should be used. Use of Text field attributes should be avoided.

Refer to the BOM Attribute Translation Table Schema for an explanation of all table fields.

13

BOM TABLE RELATIONSHIPS

BOM Mapping uses variable names as references to capture hierarchical relationships. BOM Mapping also uses

variable names to identify relationships between BOM tables. The following image illustrates these

relationships.

BOM Table Relationships

14

BOM MAPPING USE CASES

The versatility of the BOM Mapping feature allows administrators to choose among a variety of options for

implementation. Administrators must activate and map only those BOM Mapping tables needed to support their

requirements. The table below summarizes several approaches to leverage the BOM Mapping feature.

Usage Example Usage Explanation Active Tables

Basic BOM Integration Capture complex BOM structures and fulfillment fields.

Identify associations between BOM items and

Configuration attributes using only advanced BML-Based

Rules.

BOM Item Definition

BOM Mapping

Integration

Integrate with fulfillment systems, such as Oracle EBS,

that do not use BOM item attributes. Identify BOM item

associations using simple Table-Based Rules. Advanced

BML-Based Rules are optional and can further refine

Configuration attributes.

BOM Item Definition

BOM Item Mapping

BOM Mapping with

Attributes Appended

in String Variables

In addition to the BOM Mapping integration, this use

case adds BOM attributes to BOM item lines. Identify

BOM item associations using simple Table-Based Rules,

and BOM attributes using advanced BML-Based Rules.

BOM Item Definition

BOM Item Mapping

BOM Attribute Definition

BOM Mapping using

Attributes to Set

Transaction Line

Attributes

This scenario uses BOM Attribute Mapping to set the

values of Commerce line attributes, and does not use

the BOM Attribute Definition table. Identify BOM item

associations using simple Table-Based Rules. Advanced

BML-Based Rules are optional and can further refine

Configuration attributes.

BOM Item Definition

BOM Item Mapping

BOM Attribute Mapping

Full-Service BOM

Mapping without

Attribute Translations

Integrate with fulfillment systems, such as Siebel, that

support BOM item attributes. Identify BOM item and

attribute associations using simple Table-Based Rules.

Advanced BML-Based Rules are optional and can further

refine Configuration attributes.

BOM Item Definition

BOM Item Mapping

BOM Attribute Mapping

Full-Service BOM

Mapping

Integrate with fulfillment systems that support BOM

item attributes with translations. Identify BOM item,

attribute, and attribute translation associations using

simple Table-Based Rules. Advanced BML-Based Rules

are optional and can further refine Configuration

attributes.

BOM Item Definition

BOM Item Mapping

BOM Attribute Definition

BOM Attribute Mapping

BOM Attribute Translation

15

BOM MAPPING FUNCTIONAL OVERVIEW

BOM Mapping Configuration rules associate BOM items to Configuration attributes and Commerce lines. This

section explains sales configuration and reconfiguration process flows with BOM Mapping. Examples for basic

and full service implementations are addressed.

BASIC BOM MAPPING PROCESS FLOWS

The following examples cover the process flows for a basic BOM Mapping implementation, which only uses the

BOM Definition Table. The following description explains the configuration process flow.

1. Configuration rules actuate when a user saves a sales configuration to a quote.

2. The advanced BML-based BOM Configuration Rule references the BOM Item Definition table to

accomplish the following tasks:

 Record BOM hierarchical data (parent-child relationships)

 Identify BOM item quantity

3. The configuration, BOM part numbers, quantities, and parent-child relationships are saved to Commerce

Transaction Lines.

4. Administrators use the new getBOM BML function to extract the Sales or Manufacturing BOM. These

BOM instances include BOM item variable names and BOM fulfillment data (BOM item ID, type, etc.).

5. The BOM, including order information, is sent to the Fulfillment System, to complete the order.

Basic BOM Mapping Configuration Process Flow

The following example covers the reconfiguration process flow for a basic BOM mapping implementation.

1. Configuration rules actuate when a user reconfigures a transaction line.

2. The CPQ Configuration attribute values are set to reflect the transaction line. Advanced BML-based

Configuration Rules validate sales items still exist in the BOM Item Definition table. Invalid BOM items

are deleted.

3. After reconfiguration, the order follows the Configuration Process.

16

Basic BOM Mapping Reconfiguration Process Flow

FULL-SERVICE BOM MAPPING PROCESS FLOWS

The next two examples cover full-service BOM Mapping implementations. Full-service implementations use all

BOM mapping tables. The first example covers the configuration process flow for full-service BOM mapping.

1. Configuration rules actuate when a user reconfigures a sales quote.

IMPORTANT: Using BOM mapping tables enables the simple table-based configuration rule.

2. The simple table-based BOM Configuration Rule references the BOM item definition. Administrators can

also use advanced BML-based to further refine the input to configuration. BOM Mapping configuration

rules accomplish the following tasks:

 Record BOM hierarchical data (parent-child relationships)

 Identify BOM item quantity

3. The configuration, BOM part numbers, quantities, and parent-child relationships are saved to Commerce

Transaction Lines.

4. Administrators use the new getBOM BML function to extract the Sales or Manufacturing BOM. These

BOM instances include BOM item variable names and BOM fulfillment data (BOM item ID, type, etc.).

5. The BOM, including order information, is sent to the Fulfillment System, to complete the order.

17

Full-Service BOM Mapping Configuration Process Flow

The same reversed sequence described for the basic implementation, will occur for the full-service

implementation. This example covers the reconfiguration process flow for a full-service BOM mapping

implementation.

1. Configuration rules actuate when a user reconfigures a sales quote.

2. The CPQ Configuration attribute values are set to reflect the transaction line. Simple table-based

Configuration Rules reference the BOM Item Tree table to validate sales items still exist in the BOM Item

Definition table. Invalid BOM items are deleted.

3. After reconfiguration, the order follows the Configuration Process.

18

Full-Service Reconfiguration Process Flow

19

BOM MAPPING CONFIGURATION RULES

BOM Mapping Configuration rules associate BOM items and attributes to CPQ Configuration attributes and

Commerce line items. Simple Table-based Configuration rules are defined using the BOM Item Mapping Data

Table and optionally the BOM Attribute Mapping Data Table. Advanced BML-based rules can then be used in

addition to the Table-based rules to refine the mapping results. In rare cases, BOM Item Mapping tables are not

used at all, and administrators use advanced BML-based Rules to establish Configuration and Commerce

association with BOM items. If BOM Mapping tables are not used, administrators can use advance BML-based

Rules to establish Configuration and Commerce association. Advanced BML-based rules can be used in addition

to the Table-based rules to refine the mapping results.

BOM ITEM CONFIGURATION RULES

CONFIGURATION BOM ITEM MAPPING

BOM item mapping associates BOM items to Configuration attributes. During Configuration, whenever the

configuration state is changed, the BOM Mapping Configuration rules are invoked to map Configuration

attributes to BOM items. The following image illustrates BOM item and Configuration attribute associations. For

Example: When the "areYouLookingForALaptopOrDesktop" Configuration attribute is "Laptop", the root BOM

item with the Variable Name "LP94777" is created.

At the next child level, if the "processor" configuration attribute is "INTEL", the child BOM item "LAPPRO1101" is

created. If it is "AMD", the child BOM item "LAPPRO1109" is created. The child BOM item is created under the

root BOM item. Their hierarchical relationship is defined in the BOM Item Definition table. A child BOM item is

created only if its parent BOM item is created.

JSON Representation of a BOM Item

For more information about BOM item instances, refer to the BOM Instances section. The BOM Item Definition

provides the default quantity in the BOM instance. The definition node also comes from BOM Item Definition.

20

Items in the BOM instance, created by BOM item mapping, must exist in the BOM Item Definition. The hierarchy

of BOM item mapping is entirely based on the BOM Item Definition. As a result, a child BOM item is generated

only if its parent BOM item is included.

RECONFIGURATION BOM ITEM MAPPING

During reconfiguration, the Launch Configuration attributes are mapped from the BOM item instance. Refer to

the JSON Representation of a BOM Item image for the following example. If “LP94777” is the BOM instance root

BOM item, when the Configuration session is launched, the "areYouLookingForALaptopOrDesktop”

Configuration attribute is set to "Laptop". Similarly, if the child BOM item "LAPPRO1109" exists, the "processor"

Configuration attribute is set to "AMD".

If the BOM Mapping rule values conflict with sales side data, Configuration rules attempt to set the same

Configuration attribute with different values. If the attribute is not a Multi Select Menu, a runtime error occurs.

It is considered a match when the sales side Configuration attribute value is "equal", or "the same as" the

mapped value. However, if the Configuration attribute is a Multi Select Menu, the comparison operator is

inclusively "contains". In other words, as long as the Multi Select Menu attribute contains the value required by

the rule, it is considered a match.

BEST PRACTICE RECOMMENDATION: Maintain a 1-to-1 mapping between a BOM item and a Configuration

attribute value.

The table-based reverse mapping sets the Configuration attributes based on which BOM items and BOM

attributes exist in the BOM instance. It does not attempt to modify the Configuration attributes based on which

BOM items or BOM attributes are absent in the BOM instance. Refer the "LAPPRO1109" BOM item example

above for the following description. If the BOM instance contains "LAPPRO1109", the "processor" Configuration

attribute is set to "AMD" accordingly. If the BOM instance does not contain "LAPPRO1109", the table-based

reverse mapping does not attempt to set the "processor" attribute, even if it happens to be "AMD". If the

"processor" attribute must be set to a specific value when "LAPPRO1109" is not present, advanced BML can be

used to set the value, refer to From BOM Launch Configurations for more information.

When a Commerce Model line that contains a captured Sales BOM is reconfigured, mapping from BOM to

Launch Configuration invokes the following actions:

1. The Configuration is restored to the values saved on the Model line

2. The Sales BOM items are validated against the current BOM Item Definition. Invalid items are removed.

3. If Table-based BOM Mapping rules exist, they are invoked first, to map the BOM instance values to the

Configuration attributes.

4. If "From BOM to Configuration” advanced BML-based BOM mapping rules that are defined, they are

invoked next, using the defined order.

Special attention should be paid to selector configuration attributes. If the selector (search input) value needs to

be overridden via BOM Mapping, the Configuration attribute must be set to auto-locked. This is consistent with

the current Configuration behavior: the selector recommended value is preferred, unless the attribute is auto-

locked during reconfiguration. The auto-lock must be defined in the attribute, instead of being dynamically set

by a Recommendation rule.

21

BOM ATTRIBUTE CONFIGURATION RULES

Similar to BOM item mapping, the BOM attribute mapping is also bidirectional. From Configuration to BOM, the

target values are set based on the source types and values. From BOM to Launch Configuration, the initial

Configuration attribute values are set from source to target.

BOM attribute mapping is used to set a BOM attribute, the quantity of the BOM item, or a Commerce line

attribute. Under each BOM item, administrators can define many BOM attributes using attribute mapping.

Conflicting end values occur if multiple BOM attribute mappings attempt to set the same attribute to different

values. Similar results can occur From BOM to Launch Configuration, if Configuration rules attempt to set the

same Configuration attribute with different values. These events will generate runtime errors.

The BOM Attribute Mapping table identifies the attribute Target and Source. In the following JSON sample, the

“attributes” node stores BOM attribute Target Types, and the “fields” node stores Line attribute Target Types.

{

 "partNumber": "BP3025",

 "quantity": 1,

 "variableName": "BP3025",

 "definition": {

 "SequenceNum": 2020,

 "ItemId": "3025",

 "ItemType": "Standard Item",

 "Optional": "N"

 },

 "attributes": {

 "BSO3901": {"value": "H~V"},

 "BSN3095": {"value": ""}

 },

 "fields" : {

 "lineActionCode", "Add"

 },

 "explodedQuantity": 1,

 "children": []

 }

BOM MAPPING RULE EXECUTION

During Configuration, BOM Mapping rules are invoked when changes to Configuration attribute values are

saved. BOM Mapping rules run after Recommendation rules, but before Recommended Item rules. If the

Configuration contains multiple nodes, BOM Mapping rules are only run in the last node, similar to

Recommended Item rules.

22

BOM Mapping rules are invoked as follows:

 Simple Table-based BOM Mapping rules – During set up, a Configuration Model can be associated with

different BOMs using multiple BOM Mapping rules. However, on the sales side, only one Table-based

BOM Mapping rule should apply. In other words, a given Configuration state on the sales side can only

be associated with one Sales BOM.

 Advanced BML-based BOM Mapping rules – BML-based rules are actuated in order, if they are defined.

This allows administrators to revise the BOM instance using BML scripts. The BML revised result is an

updated JSON BOM instance, which must conform the BOM Item Definition.

During Configuration, administrators can reference the current BOM instance by using the system Configuration

attribute _bm_bom_instance. If the BOM instance is not null, it can be viewed in the Pipeline Viewer. The

Pipeline Viewer displays which Configuration attributes and BOM Mapping rules were used to create the BOM

instance.

If the BOM instance is not null, pricing of the BOM parts occurs. If the price is not zero, it is displayed in the

Configuration Pricing section.

IMPORTANT: The root BOM item should not have an assigned price. If the root Part Number has a defined

price, BOM pricing ignores the defined price. The BOM price displayed during Configuration is the unit price,

while the pricing displayed in quotes is the total using an exploded quantity.

EFFECTIVE DATES

By default, BOM Mapping is executed at the current time. When the BOM is stored into a quote, the effective

date of the BOM Mapping can be set on the line attribute “Line BOM Effective Date” field of the root BOM item

line, (i.e. the Model line). This effective date is honored when:

 A Sales BOM that is extracted from a quote is validated

 A BOM instance is reconfigured

In the latter case, the effective date only applies to BOM Mapping Configuration rules. Other Configuration rules

do not honor the BOM Mapping effective date.

MAPPING TO SINGLE SELECT PICK LIST ATTRIBUTES

Beginning in Release 18B, CPQ Cloud provides BOM Mapping support for Single Select Pick Lists, which are also

known as Dynamic Menus. When a Single Select Pick List option is selected, the applicable BOM Mapping rules

are invoked to add parts to a Transaction based on the Single Select Pick List selection. The Single Select Pick List

attribute type can be created in Configuration for Text, Integer, and Float data types.

IMPORTANT: To ensure proper operation of the BOM Mapping rules, the variable names referenced for the

Single Select Pick List options must match the Configurable Attribute variable names and values in the BOM Item

Mapping table.

23

BOM INSTANCE

A Configuration BOM instance is represented by a JSON object. This BOM instance is referenced during

reconfiguration and is used to generate Sales BOMs and Manufacturing BOMs, which can be sent to a back-end

system for order fulfillment.

SALES AND MANUFACTURING BOMS

BOM items can be classified as sales items, manufacturing items or both. These items are defined in the BOM

Item Definition table.

 CPQ uses sales items to create a BOM instance during Configuration, sales items are used for quotes,

and the BOM instance used during reconfiguration contains sales items. In other words, only sales items

are used inside CPQ.

IMPORTANT: Sales Items must have corresponding Part Numbers defined in the CPQ Parts Database.

 Manufacturing items are only used when CPQ submits a Manufacturing BOM to a back-end Fulfillment

system. Administrators use the BML getbom function to create a Manufacturing BOM from the saved

Configuration in a quote.

CAPTURE A BOM INSTANCE IN COMMERCE TRANSACTIONS

The BOM instance is stored in a quote when the end user saves the Configuration to a quote.

Structure

The root BOM item is equivalent to a Model line, and it will be processed as Model line within CPQ. Model lines

do not use part fields; therefore, the root BOM item Part Number is stored in the “Line BOM Part Number” field.

The other part fields of the root BOM item are not saved into the Model line. As a result, part-based pricing is

not executed on the root BOM item. Customers should not define part pricing for the root BOM item.

All child BOM items are stored as child Part lines of the Model line. All child and grandchild BOM items are

stored as the direct children of the Model line. Hierarchical relationships are stored the “Line BOM Parent ID”

field.

When a BOM tree is saved into a quote, the item Variable Names are not stored. During reconfiguration, the

getBOM BML function performs the following actions:

 Extracts the Sales BOM from the saved BOM instance

 Validates items against the current BOM Item Definition

 Resolves the BOM item Variable Names

24

CPQ uses the following system fields to capture a BOM instance into a quote:

Name Variable Name Type Description / Notes

Line Item

BOM ID

_line_bom_id Text The BOM item instance id.

When ABO is enabled, this field is used to store the asset key.

Line BOM

Parent ID

_line_bom_parent_id Text The parent BOM item instance id.

Part Number _part_number Text The part number of the BOM item

Used for child BOM items, not applicable to root BOM items.

Line BOM

Part Number

_line_bom_part_number Text The part number of the root BOM item.

Stores the root BOM Item Part Number in the Model line.

Applicable to the root BOM item only.

Line Item BOM

Attributes

_line_bom_attributes Text

Area

BOM attributes, stored as a JSON string.

Refer to BOM Attributes for the format of the JSON object.

Quantity _price_quantity Integer Quantity of the line item.

The exploded line quantity.

Line BOM Item

Quantity

_line_bom_item_quantity Integer The BOM item line quantity. This is the unexploded line

quantity, whereas _price_quantity stores the exploded quantity.

BOM Item line quantity. This is the unexploded line quantity.

The _price_quantity stores the exploded, effective quantity of

the line.

Line BOM Level _line_bom_level Integer The BOM item depth (level) in the quote.

Add a new system attribute _line_bom_level, of integer type.

 The value is “0” for the root BOM item, i.e. the Model line.

 The value is “1” for first level child BOM items

 The value is “2” for second level child BOM items, etc.

The value is empty for non-BOM quote lines

Line BOM

Effective Date

_line_bom_effective_date Date BOM Effective Date. If null, the current time is used.

Stores the system attribute in the Model line Effective Date to

enforce date effectivity in all BOM mappings.

Enforces date effectivity data in the BOM Item Definition and

BOM Item Mapping Data Tables. Enforced at runtime for Model

to BOM, Get BOM from quote, and BOM to Configuration.

Is Line Item

Mandatory?

_is_line_item_mandatory Boolean Used to identify if the line item is a mandatory part.

True if the BOM item is not optional. The default logic can

be overridden by BOM attribute mapping.

25

Quantity

BOM Mapping makes it possible to set the Model line “Price Quantity" to numbers greater than one, by using

“Price Quantity” and “Line BOM Item Quantity” fields. The child “Line BOM Quantity” value is multiplied by the

parent “Price Quantity” value, and the sum is stored in the child “Price Quantity” field.

 Price Quantity - the effective or exploded quantity, i.e. multiplied by the parent Price Quantity.

This field is used to calculate pricing.

 Line BOM Item Quantity - the BOM item quantity before explosion.

For example: If the BOM Model line “Line BOM Quantity” is 2, and the child line “Line BOM Quantity” is 3; the BOM

Model line “Price Quantity” will be 2, and the child line “Price Quantity” will be 6 (3*2).

Model Quantity and Pricing

Since the Model line quantity can be more than one, the total price of the quote uses this quantity when

calculating the Model line subtotal. This is different from the standard Configuration total price, where the unit

price assumes the Model quantity is one.

SAVE A BOM INSTANCE TO A QUOTE

When the Configuration is saved to a quote, the BOM instance is saved as item lines in the quote. Before the

BOM instance is saved to a quote, any defined BOM attributes and BOM attribute translations are added to the

BOM instance.

If a BOM item instance contains a "fields" node, it is used to populate the Commerce line attribute. BOM

attribute mapping creates a "fields" node when an attribute Target is Line Attribute. Administrators can also use

advanced BML-based rules to populate Commerce lines.

When quote line items are initially created, defined line attribute default values take precedence over BOM

Mapping attempts to set the line attribute. This is consistent with the current Commerce behavior.

The Configuration date attribute does not have a “time” component. If a Configuration date attribute is mapped

to a Commerce date attribute that includes time, the time portion of the Configuration date attribute is set to

00:00 AM on the date in the default time zone, set up on the CPQ server.

26

IMPLEMENTING BOM MAPPING

The following items outline setup activities:

 Capture BOM Definitions in CPQ Data Tables

 Activate BOM Mapping Tables

 Map BOM Data Tables to CPQ BOM Platform Tables

 Validate the BOM Item Definition Tree

 Define BOM Mapping Configuration Rules

 Validate Table-based Configuration Rules

 Referencing BOM Items

 BML Functions to Extract Sales and Manufacturing BOMs

 Advanced Settings (Disable Rule Updates and Customize Page Size)

27

CAPTURE BOM DEFINITIONS IN CPQ BOM DATA TABLES

Administrators perform the following steps to set up BOM Mapping Data Tables.

1. Identify BOM Mapping tables needed to support customer requirements, for more information refer to

the BOM Mapping Use Cases section.

2. Populate required Data Tables. CPQ Cloud provides sample table definitions for each BOM table, which

define the required schema. Perform the following steps to acquire sample:

a. Click Admin to navigate to the Admin Home page.

b. Click BOM in the Products section.

c. Click BOM Tables in the BOM Declaration section.

d. Click the Name link for the appropriate BOM Table.

e. Click the Download Sample link.

 Download BOM Table Schema

IMPORTANT: Use the CPQ database date format for Data Table “Effective From” and “Effective To” fields:

 • Format: yyyy-mm-dd hh:mm:ss

 • Example: 2015-09-02 23:58:15

 Alternatively, the following ISO date formats can be used:

 • YYYY-MM-DD

 • YYYY-MM-DDThh:mm:ss

 • YYYY-MM-DDThh:mm:ssTZD

 If you open a Data Table CSV file in Excel, Excel may change the date to the “m/d/yyyy hh:mm” format.

 For example: "9/1/2015 23:58". Verify the date is formatted, as specified above or parsing errors will occur.

For more information on the next two steps, refer to the CPQ Cloud Online Help “Data Table” and

“Bulk Upload” topics.

1. Upload the required Data Tables.

2. Deploy the Data Tables.

IMPORTANT: Setting up BOM tables is not part of migration. Administrators should initialize BOM tables in the

target environment, before migrating BOM data from the source to the target environment.

Administrators must set up the required BOM tables. This process is a one-time event. Administrators can

modify the setup, if business needs are changed. Setting up BOM tables consists of activation and mapping.

28

ACTIVATE BOM TABLES

Activation enables BOM tables used for BOM Mapping.

1. Navigate to Admin > BOM > BOM Tables.

The Bills of Materials Tables page appears.

Bills of Materials Tables – Incomplete Mapping

IMPORTANT: The BOM Item Definition table is the key component of BOM Mapping and is the only required

table for all use cases. For examples of when these tables are used, refer to BOM Mapping Use Cases.

2. Select the appropriate Active checkbox to activate the required tables.

3. Click Save.

MAP BOM DATA TABLES TO CPQ BOM PLATFORM TABLES

The mapping status of the BOM table displays “Incomplete” for the first activation. After mapping, the status

changes to “Complete”.

1. Navigate to Admin > BOM > BOM Tables.

2. Select the Name link of the appropriate BOM table.

3. Select the appropriate table in the Table Name drop-down menu.

If the selected Data Table column names and data types match the default, the column mapping is

automatic. If the column names and data types do not match, map the columns manually. Select the

appropriate columns from the Column Mapping drop-down menus.

4. Click Save, when column mapping is complete.

29

BOM Item Definition Data Table Mapping

After successful completion of a BOM table mapping, the Edit BOM Table Definition page displays “Mapping

saved successfully”, and the Mapping Status updates to “Complete” on the Bill of Materials page.

Successful BOM Table Set Up

30

VALIDATE BOM DEFINITIONS

After mapping BOM Data Tables to CPQ platform BOM Tables, administrators should validate the BOM Item

Tree, which contains BOM items, BOM item attributes, and BOM attribute translations.

Perform the following steps to validate the BOM Item Tree.

1. Navigate to Admin > BOM > BOM Root Items List.

BOM Root Items Administration List Page

2. Select the appropriate Variable Name link.

The BOM Item Tree Administration page appears.

BOM with Models as Children

Beginning in 2017 R1, a BOM can have models as children of other models. Companies can use this feature to

offer packaged bundles containing models from separate product families. As in prior releases, the BOM Item

Tree Administration page displays the expanded hierarchy and BOM definition information for a root BOM item,

child items, and grandchild items. The BOM Item Tree Administration page also displays root models and other

models as child items. Each model can have its own individual parts and models.

The following image shows the BOM Item Tree Administration page with models as children of other models.

For example, models "Installation Fee", "Activation Fee", and "Internet Administration Fee" are child items to

"Internet".

IMPORTANT: Child models are not reconfigurable. They behave as mandatory models added by Recommended

Item Rules.

31

Validation Errors

If there are any validation errors in the BOM item definition, the BOM Item Tree Administration page displays an

error message, at the top of the page. The item with an error is proceeded by error indicator . A BOM item

definition is marked as incorrect, if errors exist in the item definitions, attribute definitions, or attribute

translations.

BOM MAPPING WITH TWO VALIDATION ERRORS

The following example illustrates two validation errors.

As shown in the following imageError! Reference source not found., a message at the top of the page indicates

an error on page 1. The sample page also indicates that errors exist for “ET4002” and ”ET1000”.

BOM Item Tree Administration Page with Validation Errors

Click on the Variable Name link, for details about the error.

 Refer to the Part Number Does Not Exist in CPQ Parts Database image to view “EXT1000” error details.

 As shown in the following image, the error for “ET4002” is caused by “ETS002”, one of the associated

attributes.

32

ET4002 Error Example

Click on the attribute Variable Name link, for details about the error.

The following image displays an error message denoting that the “Effective From” value is formatted incorrectly.

Date Formatted Incorrectly

33

As shown in the following image, “EXT1000” is displaying an error because the Part Number does not exist in the

CPQ Parts Database.

Non-existent Part Number Error

VALIDATION ERROR IN BOM HIERARCHY WITH MODELS AS CHILDREN

As shown below, when administrators define child items in the BOM hierarchy as models, CPQ Cloud validates

the models in the BOM item definition in the same way as other BOM errors. The BOM Item Tree Administration

page displays an error message at the top of the page. The items with an error are proceeded by the following

error indicator.

BOM Item Tree with Errors

Click on the attribute Variable Name link, for details about the error.

34

When administrators click the Variable Name associated with the error, the BOM Item Administration page

opens. As shown in the following image, an error message displays when the part number associated with a

BOM item or the path to a model in the BOM hierarchy does not exist in CPQ Cloud.

Non-existent Part Number of Model Path

IMPORTANT:

 Errors must be resolved before setting up BOM Mapping Configuration rules.

 If the BOM Item Administration page shows that parts or models do not exist when an administrator has

created them, deploy the BOM Item Definition table.

 If the "Buy Direct" field of a part number referenced by a BOM item definition is modified, redeploy the BOM

Item Definition data table.

35

CREATE BOM MAPPING CONFIGURATION RULES

Administrators create BOM Mapping Configuration rules at the Model level. BOM Mapping rules associate Configuration attributes to

the BOM items. Use simple Table-Based Rules, advanced BML-Based Rules, or both for BOM Mapping.

Perform the following steps to create a BOM Mapping Configuration rule.

1. Navigate to the Model Administration List page.

Admin > Catalog Definition > Product Families > Product Lines > Models

2. Select BOM Mapping from the Navigation drop-down menu, and click List.

 Access BOM Mapping Rules for a Model

3. Click Add to set up a new BOM Mapping Configuration rule.

BOM Mapping: Rules List Page

4. Continue to one of the following procedures:

 Define Simple Table-based Configuration Rules

 Define Advanced BML-based Configuration Rules

36

DEFINE SIMPLE TABLE-BASED CONFIGURATION RULES

A simple table-based BOM mapping rule uses the BOM item mapping data table to declaratively map the

configuration attributes to BOM items.

IMPORTANT: The BOM Item Definition and BOM Item Mapping tables must be activated to use simple Table-

based Configuration rules. If the BOM Item Mapping table is not activated, advanced BML-based must be used.

1. Enter a Name, Variable Name, and Description for the new BOM Mapping Configuration rule.

2. Define the Condition Type for BOM mapping rules.

Beginning in Release 18B, administrators can define a logic condition that specifies when a rule should run.

There are three options: Always True, Simple Condition, and Advanced Condition.

a. Always True: The rule will fire automatically, every time, because a specific condition does not need

to be met.

b. Simple Condition: The rule will fire based on defined condition attributes, operators, and values that

are selected from drop-down menus.

When Simple Condition is enabled, administrators can define Attributes, Operators, Values, Range

Operators, and Range Values for the desired condition. They can also Add Rows and set the Order of

Operations to provide multiple conditions.

c. Advanced Condition: The rule will fire based on an advanced function written with BML.

The advanced function is meant for complex condition logic. Administrators use BML to define

conditions in the Function Editor. After selecting the Advanced Condition type, administrators select

the View/Edit the BML Function to access the Function Editor.

IMPORTANT: Simple and Advanced Conditions are only evaluated during Configuration; these conditions are

NOT evaluated during Reconfiguration.

3. Select a Target BOM from the drop-down menu. The target BOM is an available BOM in the BOM root

items list.

4. Select a Target Commerce Process, if BOM attributes are mapped to line attributes.

5. Click Save and View Details.

37

Create BOM Mapping Rule

Validate Table-based BOM Mapping Rules

If there are validation errors for the BOM item mapping or its children BOM attribute mappings, an error icon is

shown up on the BOM item.

BOM Item Mapping Validation Error

Click on the item Variable Name link, for details about the error.

As shown in the following image, there is a typo of the configurable attribute name. It should be "processor"

instead of "processors".

BOM Item Mapping with Configurable Attribute Error

38

In the following example, the following error is displayed after the administrator selects Save and View Details.

The BOM Item Definition table had more than one root item under LP94777. Each Table-based BOM Mapping

rule can only map to a single root BOM item tree. If the data table contains more than one root BOM item under

a single BOM mapping rule, it is a validation error.

BOM Mapping Rule with Invalid BOM Item Definition Error

When creating BOM Item Configuration rules, administrators can define multiple BOM mapping rules, each being

associated with different root BOM items. However, on the sales side, only one of the table-based BOM mapping

rules should apply, based on the Configuration attribute and value defined in the root BOM item mapping. In other

words, a given Configuration state on the sales side can only be associated with a single Sales BOM.

Mapping to Configurable Array Attributes

Table-based BOM Mapping supports mapping to configurable array attributes in both BOM item mapping and

BOM attribute mapping.

BOM ITEM MAPPING FOR CONFIGURABLE ARRAY ATTRIBUTES

When Configurable array attributes are used with BOM Item Mapping, the Array Set row items are mapped to a

matching BOM item. The mapping should be one-to-one between the Array Set row and a BOM item.

For example: In the following BOM Item Mapping Data Table, there are two BOM items displayed under the

"SoftwareRootBOM" item:

 AntiVirusItem - Part Number "antiVirusPart", ConfigAttrVarName "softwareType", and ConfigAttrValue

"Enterprise Anti-Virus"

 EncryptionItem - Part Number "encryptionPart", ConfigAttrVarName "softwareType", and

ConfigAttrValue "EncryptionSoftware"

BOM Item Mapping Data Table

39

Customers can use Configurable Array Sets to define BOM items to be selected during Configuration.

For example: The following image displays an Application Software Configuration item with three items:

"Enterprise Anti-Virus", "Encryption Software", and "Encryption Software".

Application Software Configuration with Software Packages

When these BOM items are selected during Configuration, the following BOM Instance is generated:

{

 "variableName": "SoftwareRootBOM",

 "partNumber": "softwareSelectionPart",

 "quantity": 1,

 "category": "sales",

 "children": [{

 "variableName": "AntiVirusItem",

 "partNumber": "antiVirusPart",

 "quantity": 1

 }, {

 "variableName": "EncryptionItem",

 "partNumber": " encryptionPart",

 "quantity": 1

 }, {

 "variableName": "EncryptionItem",

 "partNumber": "encryptionPart",

 "quantity": 1

 }]

 }

IMPORTANT:

 When configurable array attributes from an array set are used in more than one BOM item mappings, the

same array attributes form the set must be used in all BOM item mappings.

 Refer to Appendix G: BOM Mapping Configurable Array Attribute Restrictions for more restrictions on BOM

item mappings and explanations.

40

BOM ATTRIBUTE MAPPING FOR CONFIGURABLE ARRAY ATTRIBUTES

When Configurable Array Attributes are used with BOM Item Mapping, related BOM Attribute Mappings can use

additional Configurable Array Attributes from the same array set. The additional Configurable Array Attributes

for a BOM item are mapped to Attribute Mapping items.

For example: In the following BOM Attribute Mapping Data Table, two Configurable Attributes are displayed:

 supportType - TargetType "BOM_ATTRIBUTE", TargetVariableName "Support", and SourceType

"CONFIG_ATTRIBUTE".

 softwareQuantity - TargetType "QUANTITY" and SourceType "CONFIG_ATTRIBUTE".

BOM Attribute Mapping Data Table

Customers can also use Configurable Array Sets to define BOM item attributes to be selected during

Configuration.

For example: The following image displays an Application Software Configuration with three items:

 "Enterprise Anti-Virus" with "Gold" support and quantity "2"

 "Encryption Software" with "Silver" support and quantity "1"

 "Encryption Software" with "Platinum" support and quantity "3"

Application Software Configuration with Software Packages, Support, and Quantity

41

When these BOM items and attributes are selected during Configuration, the following BOM Instance is

generated:

{

 "variableName": "SoftwareRootBOM",

 "partNumber": "softwareSelectionPart",

 "quantity": 1,

 "category": "sales",

 "children": [{

 " variableName": "AntiVirusItem",

 "partNumber": "antiVirusPart",

 "quantity": 2,

 "attributes": {"Support": {value: "Gold"}}

 }, {

 " variableName": "EncryptionItem",

 "partNumber": " encryptionPart",

 "quantity": 1,

 "attributes": {"Support": {value: "Silver"}}

 }, {

 " variableName": "EncryptionItem",

 "partNumber": " encryptionPart",

 "quantity": 3,

 "attributes": {"Support": {value: "Platinum"}}

 }]

 }

IMPORTANT:

• BOM Attributes can be mapped to both Configurable Array Attributes and non-array type Configurable

Attributes.

• Refer to Appendix G: BOM Mapping Configurable Array Attribute Restrictions for restrictions on BOM

attribute mappings

42

RECONFIGURATION OF CONFIGURABLE ARRAY ATTRIBUTES

During reconfiguration, the array set is initialized to be consistent with the BOM items in the quote. For

example: If a quote contains a single BOM item that maps to the array set, the size of the array set is set to one.

A more complicated use case occurs when some of the array-set attribute domain values are not mapped to

BOM items. In the case, during reconfiguration the unmapped records are left unmodified. For example:

 A Configuration array set "Dessert" is defined, with an attribute called "DessertType" with three options:

Coffee, Ice cream and Cake. "Ice-cream" is mapped to BOM item "BOMIcecream", "Cake" is mapped to

BOM item "BOMCake", but "Coffee" is not mapped.

 On the sales side, there are only two rows in the "Dessert" menu, one is "Coffee", and the other is "Cake".

 When a user selects “Cake” during Configuration, a Sales BOM is created, containing a BOM item "BOMCake".

 When the BOM instance is saved to a quote, there is a part line corresponding to "BOMCake".

 When the quote is reconfigured, the "BOMCake" part line is replaced by "BOMIcecream".

 During reconfiguration, the BOM mapping from BOM to Launch Configuration replaces the "Cake" in the

"Dessert" array set with "Ice cream", but leaves "Coffee" is unchanged, as Coffee is never involved in the

BOM mapping.

IMPORTANT: Refer to Appendix G: BOM Mapping Configurable Array Attribute Restrictions, to view restrictions

that are enforced, primarily to maintain one-to-one mapping between a row in the array set and a BOM item.

43

DEFINE ADVANCED BML-BASED CONFIGURATION RULES

Advanced BML-based Configuration rules use BML to map between Configuration attributes and BOM items.

BOM Mapping Rule - Advanced Function

Two BML expressions can be defined for the two-way mapping:

 From configuration to BOM items

 From BOM to launch configuration

From Configuration to BOM

BML from configuration to BOM is generally used to revise the BOM instance created by the table-based

mapping, though it is possible to use BML-based mapping without the simple, table-based mapping. Use the

_bm_bom_instance Configuration system attribute to acquire the BOM instance as a JSON object. The BML

script should return a JSON object, which is used to set the BOM instance held by the configuration session.

The BOM instance created by the BML-based mapping must conform to the BOM Item Definition. The instance

is validated against the current BOM Item Definition to verify:

1. BOM items are valid;

2. The following line item fields exist: variableName, partNumber, and quantity.

For BML-based Configuration rule examples, refer to the following samples.

44

READ AND UPDATE BOM ITEMS SAMPLE

The following example uses BML JSON functions to double the child BOM item quantities.

//--

// Sample BML from Configuration to BOM

//

// Double the quantities of the direct child BOM items of the root BOM

/

// Input Attributes:

// _bm_bom_instance: the BOM item instance in JSON

//

// Output:

// The BOM item instance in JSON

//---

// Get the first level child BOM items

size = 0;

children = jsonget(_bm_bom_instance, "children", "jsonarray");

if (isnull(children) == false) {

 size = jsonarraysize(children);

}

// Loop through child BOM items.

// No-op if the children is empty or does not exist.

indices = range(size);

for index in indices {

 bomItem = jsonarrayget(children, index, "json");

 qty = jsonget(bomItem, "quantity", "integer");

 jsonput(bomItem, qty * 2);

}

return _bm_bom_instance;

IMPORTANT: jsonget fetches children by reference, and jsonarrayget returns bomItem by reference.

As a result, updating bomItem directly updates _bom_item_instance.

45

ADD A BOM ITEM SAMPLE

The following example creates the BOM item, and appends it to the "children" node of the parent BOM item.

// Sample code snippet to add a child BOM item to the root

tb1 = json();

jsonput(tb1, "variableName", "TB1");

jsonput(tb1, "partNumber", "40mb_100gb");

jsonput(tb1, "quantity", 3);

// Get the "children" node by reference.

// Subsequent changes to "children" directly update _bm_bom_instance

children = jsonget(_bm_bom_instance, "children", "jsonarray");

if (isnull(children)) {

 jsonput(_bm_bom_instance, "children", jsonarray());

 children = jsonget(_bm_bom_instance, "children", "jsonarray");

}

// Append the child BOM item.

jsonarrayappend(children, tb1);

The following sample BOM instance is created:

{

 "partNumber": "telecom_package",

 "quantity": 2,

 "isModel": false,

 "explodedQuantity": 2,

 "category": "sales",

 "variableName": "TBRoot",

 "children": [{

 "partNumber": "40mb_100gb",

 "quantity": 3,

 "isModel": false,

 "explodedQuantity": 6,

 "variableName": "TB1"

 }]

}

IMPORTANT:

 explodedQuantity is automatically updated once all BML-based BOM mapping rules are executed and

does not need to be set in BML.

 isModel will default to False and does not need to be set in BML. This option is only set to True for

System Configuration.

46

CREATE A ROOT BOM FROM SCRATCH SAMPLE

If table-based BOM mapping rules do not exist, a root BOM can be created from scratch. In this special case,

the _bm_bom_instance system attribute starts as an empty skeleton without the part number or variable

name: {"category": "sales", "isModel": false}

//--

// Sample BML from Configuration to BOM

// Create the root BOM from scratch when there are no table-based BOM mapping rules

//

// Input Attributes:

// _bm_bom_instance: the BOM item instance in JSON. It starts as a skeleton as

// {"category": "sales", "isModel": false},

// without the part number or variable name.

// Output:

// The BOM item instance in JSON

//---

// The following three fields are mandatory fields to create a BOM item

jsonput(_bm_bom_instance, "variableName", "TBRoot");

jsonput(_bm_bom_instance, "partNumber", "telecom_package");

jsonput(_bm_bom_instance, "quantity", 1);

return _bm_bom_instance;

This results in the following BOM:

{

 "partNumber": "telecom_package",

 "quantity": 2,

 "isModel": false,

 "explodedQuantity": 2,

 "category": "sales",

}

explodedQuantity is automatically updated once all BML-based BOM mapping rules are executed and does

not need to be set in BML.

In BML from Configuration to BOM, the input attribute _bm_bom_instance is never null. If the BOM item

instance does not exist for the current Configuration session, an empty skeleton without the part number or

variable name is sent.

There are subtle differences between table-based mapping and BML-based mapping. If table-based mapping is

defined, it is always fired first. It creates a brand new BOM instance each time it is invoked and BML-based

mapping can then make additional adjustments to that BOM. In this case, the BML does not have to be

idempotent. However, if table-based mapping is not defined, the BML mapping receives the BOM instance

created from the previous update as the starting point and the BML then must be idempotent.

For example: a BML-based BOM mapping creates a warranty BOM item based on configurable attribute "Select

Warranty". If table-based mapping is defined, the table-based mapping creates a new BOM instance before the

BML mapping is fired each time. However, if table-based mapping is not defined, the BML can work on a BOM

instance from the previous update and must account for the possibility that the warranty BOM item may have

been created in the previous update. Without that logic, a duplicate warranty BOM item may be created each

time the end user clicks "Update".

47

DELETE A BOM ITEM SAMPLE

The following example removes the last child BOM item from the root BOM.

//--

// Sample BML from Configuration to BOM

// Remove the last child BOM item.

//

// Input Attributes:

// _bm_bom_instance: the BOM item instance in JSON

//

// Output:

// The BOM item instance in JSON

//---

size = 0;

children = jsonget(_bm_bom_instance, "children", "jsonarray");

if (isnull(children) == false) {

 size = jsonarraysize(children);

}

if (size > 0) {

 jsonarrayremove(children, size - 1);

}

return _bm_bom_instance;

For more complicated cases, JSON path can be used. For example: in Oracle EBS, optional class BOM items are

defined to serve as containers of optional items. In this example, all empty optional class items that do not have

child items are removed.

//--

// Sample BML from Configuration to BOM

// Remove empty optional class items.

// An empty optional class item is as such:

// - Its "definition" contains Itemtype == 'CLASS'.

// - Its "children" is empty

//

// Input Attributes:

// _bm_bom_instance: the BOM item instance in JSON

//

// Output:

// The BOM item instance in JSON

//---

jsonpathremove(_bm_bom_instance, "$..children[?(@.definition.ItemType=='CLASS' &&

@.children.length()==0)]");

return _bm_bom_instance;

IMPORTANT: Release 18B provides support for removal of empty "Option Class" BOM items in table-based

mapping. Refer to "Option Class" BOM Item Type for more details.

48

ADD A BOM ATTRIBUTE SAMPLE

In the following example, BML is used to insert the "membership card type" BOM attribute, based on the

customer rating. It also illustrates how to use BML to implement comparison operators other than equal.

//--

// Sample BML from Configuration to BOM

// Set the membership card type based on the customer rating

// If 70 <= customerRating, set cardType = Platinum

// If 30 <= customerRating < 70, set cardType = Gold

// else set cardType = Silver

//

// Input Attributes:

// _bm_bom_instance: the BOM item instance in JSON

// customerRating: an integer from 0 to 100.

//

// Output:

// The BOM item instance in JSON

//---

// Locate the membership card BOM item

membershipCard =jsonpathgetsingle(_bm_bom_instance, "$..children[?(@.variableName

== 'MembershipCard')]", "json");

if (isnull(membershipCard) == false) {

// Create cardType BOM attribute

 cardTypeValue = "Silver";

 if (70 <= customerRating) {

 cardTypeValue = "Platinum";

 } elif ((30 <= customerRating) AND (customerRating < 70)) {

 cardTypeValue = "Gold";

 }

 cardType = json();

 jsonput(cardType, "label", "Membership Card Type");

 jsonput(cardType, "value", cardTypeValue);

 // Attach the cardType BOM attribute

 attributes = jsonget(membershipCard, "attributes", "json");

 if (isnull(attributes)) {

 jsonput(membershipCard, "attributes", json());

 attributes = jsonget(membershipCard, "attributes", "json");

 }

 jsonput(attributes, "cardType", cardType);

}

return _bm_bom_instance;

49

CONFIGURABLE ARRAY ATTRIBUTES SAMPLE

This example demonstrates how to use configurable array attributes to create BOM items. The BML code loops

through the software array set and creates the corresponding BOM item based on the software type selected.

//---

// Sample BML from Configuration to BOM

// Create BOM items based-on configurable array attributes

//

// Input Attributes:

// _bm_bom_instance: the BOM item instance in JSON

// softwareArraySize: int

// softwareType: string[]

// softwareQuantity: integer[]

// softwareSupport: string[]

//

// Output:

// The BOM item instance in JSON

//---

// Set up the root BOM item

jsonput(_bm_bom_instance, "variableName", "SoftwareRootBOM");

jsonput(_bm_bom_instance, "partNumber", "softwareSelectionPart");

jsonput(_bm_bom_instance, "quantity", 1);

// Set up children

children = jsonarray();

indices = range(softwareArraySize);

for index in indices {

 software = softwareType[index];

 variableName = "";

 partNumber = "";

 if (software == "Enterprise Anti-Virus") {

 variableName = "AntiVirusItem";

 partNumber = "antiVirusPart";

 } elif (software == "Enterprise Anti-Spam") {

 variableName = "AntiSpamItem";

 partNumber = "antiSpamPart";

 } else {

 continue;

 }

 // Create the child BOM item

 item = json();

 jsonput(item, "variableName", variableName);

 jsonput(item, "partNumber", partNumber);

 jsonput(item, "quantity", softwareQuantity[index]);

 //Add BOM attributes

 attributes = json();

 attr = json();

 jsonput(attr, "value", supportType[index]);

 jsonput(attributes, "Support", attr);

 jsonput(item, "attributes", attributes);

 jsonarrayappend(children, item);

}

jsonput(_bm_bom_instance, "children", children);

return _bm_bom_instance;

50

MANUFACTURING BOM VS SALES BOM

BOM mapping can occur in two scenarios. During a normal Configuration flow, a Sales BOM is created via BOM

mapping. In addition, the getbom BML function can be used to create a manufacturing BOM for fulfillment

integration. Both scenarios trigger all defined BOM mapping rules. Inside the BML-based BOM mapping, the

category field of _bm_bom_instance is used to indicate whether the BML is triggered for sales or

manufacturing BOM mapping.

JSON PATH FUNCTIONS

The JSON path functions can be used to provide versatile modification of JSON objects.

IMPORTANT: Refer to the JSON Function topic in the CPQ Cloud Administration Online Help for detailed

information for the following JSON path functions:

• jsonpathgetsingle

• jsonpathgetmultiple

• jsonpathcheck

• jsonpathremove

// No operations are performed if the BML is invoked for a manufacturing BOM.

// This check is only required when getbom is used to extract the manufacturing BOM

category = jsonget(_bm_bom_instance, "category"); //"sales" or "manufacturing"

if (category == "manufacturing") {

 return _bm_bom_instance;

}

51

From BOM to Launch Configurations

At the beginning of reconfiguration, BML can be used to set initial configuration attribute values to be consistent

with the input BOM instance when the configurator is launched. The _bm_bom_instance configuration

system attribute is used to acquire the BOM instance as a JSON object. The BML execution returns name-value

pairs in JSON to set the configuration attributes:

 The key is the configuration attribute variable name.

 The values are typically strings, but any data that can be properly converted to string is acceptable.

 If the configuration attribute is MSM or an array attribute, the value should be a JSON array of strings.

The following table provides Configurable Attribute examples.

Configurable Attributes Sample Value Comment

Integer Attribute "1"

1 Interpreted as "1"

Boolean Attribute "true"

"false"

true Interpreted as "true"

false Interpreted as "false"

Integer Array

(or MSM) Attribute

["1", "2", "3"] For array attributes, three rows exist in the array set.

For MSM, menu item "1", "2", "3" are checked.

[1, 2, 3] Interpreted as ["1", "2", "3"]

Boolean Array Attribute ["true", "false", "true"]

[true, false, true] Interpreted as ["true", "false", "true"]

52

OVERRIDE SIMPLE CONFIGURABLE ATTRIBUTES SAMPLE

In the following example, we set the customer rating to be consistent with the membership card type, if the

customer rating is not in the range that is consistent with the card type.

//--

// Sample BML from BOM to Launch Configuration

//

// Set the membership card type based on the customer rating if the current customer

// rating is inconsistent with the card type

// If cardType == Platinum and customerRating < 70, set customerRating = 85

// If cardType == Gold and customerRating not in [30,70), set customerRating = 50

// If cardType == Silver and customerRating not in [0, 30), set customerRating = 15

//

// Input Attributes:

// _bm_bom_instance: the BOM item instance in json

// customerRating: an integer from 0 to 100.

//

// Output:

// attributeOverrides, json as a name-value pair to set configuration attribute values

//--

attributeOverrides = json();

if(isnull(_bm_bom_instance) == false){

 cardTypeValue =

jsonpathgetsingle(_bm_bom_instance, "$..children[?(@.variableName ==

'MembershipCard')].attributes.cardType.value");

 if ((cardTypeValue == "Platinum") AND (customerRating < 70)) {

 jsonput(attributeOverrides, "customerRating", 85);

 } elif (cardTypeValue == "Gold" AND (customerRating < 30 OR customerRating

>= 70)) {

 jsonput(attributeOverrides, "customerRating", 50);

 } elif (cardTypeValue == "Silver" AND customerRating > 30) {

 jsonput(attributeOverrides, "customerRating", 15);

 }

}

return attributeOverrides;

Note the null check for _bm_bom_instance. Unlike from configuration to BOM, _bm_bom_instance can be null

for BML to handle from BOM to configuration. Furthermore, from BOM to configuration is always invoked in the

context of sales BOM.

53

OVERRIDE CONFIGURABLE ARRAY ATTRIBUTES SAMPLE

The following is a more complicated example that sets the values of configurable array attributes. It is the

reverse mapping of the previous Configurable Array Attributes Sample.

//--

// Sample BML from BOM to Launch Configuration

// This example sets software array sets based on the enterprise software BOM items.

//

// Input Attributes:

// _bm_bom_instance: the BOM item instance in JSON

//

// Output:

// attrOverrides, json as a name-value pair to set configuration attribute values

//--

attrOverrides = json();

// _bm_bom_instance might be null. It is prudent to check.

if(isnull(_bm_bom_instance)) {

 return attrOverrides;

}

size = 0;

children = jsonget(_bm_bom_instance, "children", "jsonarray");

if (isnull(children) == false) {

 size = jsonarraysize(children);

}

softwareTypes = jsonarray();

softwareQuantities = jsonarray();

softwareSupports = jsonarray();

// Loop through "children". No operations are performed if children do not exist

// or are empty.

indices = range(size);

for index in indices {

 item = jsonarrayget(children, index, "json");

 software = "";

 variableName = jsonget (item, "variableName");

 if (variableName == "AntiVirusItem") {

 software = "Enterprise Anti-Virus";

 } elif (variableName == "AntiSpamItem") {

 software = "Enterprise Anti-Spam";

 } else {

 continue;

 }

 quantity = jsonget(item, "quantity", "integer");

 support = jsonpathgetsingle(item, "$.attributes.Support.value");

 jsonarrayappend(softwareTypes, software);

 jsonarrayappend(softwareQuantities, quantity);

 jsonarrayappend(softwareSupports, support);

}

jsonput(attrOverrides, "softwareType", softwareTypes);

jsonput(attrOverrides, "softwareQuantity", softwareQuantities);

jsonput(attrOverrides, "softwareSupport", softwareSupports);

// set the correct size for the array set

jsonput(attrOverrides, "softwareSize", jsonarraysize(softwareTypes));

return attrOverrides;

54

REFERENCING BOM ITEMS

BOM ITEM DEFINITION TREE REFERENCES

The BOM Item Definition is hierarchical. The “BomItemDef.ParentVariableName” recursively points to its parent

“BomItemDef's VariableName”. The BOM Item Definition hierarchy, along with its BOM Attribute Definition

children, and BOM Attribute Translation grandchildren forms a BOM item definition tree.

To ease queries and migration, all BOM definition entities must include the root BOM Item Definition Variable

Name:

 BomItemDef.RootVariableName

 BomAttributeDef.RootBomItemVarName

 BomAttributeTranslation.RootBomItemVarName

BOM ITEM MAPPING TREE REFERENCES

The BOM Item Map and its children BOM Attribute Maps form a BOM Item Mapping Tree, based on the BOM

Item Tree. A BOM Mapping Configuration rule should only reference a single BOM Item Mapping Tree.

To ease queries and migration, all BOM Mapping entities must include the BOM Mapping rule location

“productFamilyVarName:productLineVarName:modelVarName:configRuleVarName”, in the following Data

Table columns:

 BomItemMap.ParenBomMapVarName

 BomAttrMap.RootBomMapVarName

In the rare case where two Configuration Models use the same BOM item mappings, as defined in the Data

Tables, the wildcard rule location can be used, in the format of *:configRuleVarName. Exact BOM Mapping

rule locations have a higher precedent over wildcard rule locations. A BOM Mapping Configuration rule attempts

to load its BOM Item Mapping Tree that uses an exact rule location first. If there are no BOM Item Mapping Data

Table records matching the exact rule location, will the BOM Mapping Configuration rule attempt to load a BOM

Item Mapping Tree that uses a wildcard rule location. This means that a BOM Mapping Configuration rule loads

its BOM Item Mapping Tree using either the exact rule location or the wildcard rule location, but it never loads

both locations.

55

BML FUNCTIONS TO EXTRACT SALES AND MANUFACTURING BOMS

When a Sales BOM is extracted from a quote, the return result is based on the root BOM line (i.e. the root

Model line) as its children BOM part lines. If the "validateBomModel" flag is true, the last saved BOM instance is

validated, and normalized, against the latest BOM item definition.

When a Manufacturing BOM is extracted from a quote, it starts with the saved configuration state on the model

line, and executes a BOM mapping from configuration to BOM. The execution fires both the table-based BOM

mapping, as well as advance BML mapping. Table-based mapping automatically generates a Manufacturing

BOM, based on the BOM item mappings and the BOM item definitions. The BML-based BOM mapping, if

defined, is more complicated. The same BML-based BOM mapping rules are invoked to create both a Sales BOM

and Manufacturing BOM. Inside the BML script, administrators indicate whether the BML-based rule creates a

Sales BOM or a Manufacturing BOM using the category" field of the input _bm_bom_instance. If the

category is "manufacturing", the BML script is invoked to create a Manufacturing BOM.

ADVANCED SETTINGS

Disable Auto Updates

1. Administrators can set Disable auto-updates on BOM Mapping rules.

2. Navigate to Admin > Products > Configuration Settings

3. Set the Disable auto-updates on BOM-Mapping rules option.

 No, is the default setting.

 Yes, disables BOM mapping rules during the Configuration session until the Configuration is saved to

a quote.

Disable BOM Mapping Rule Auto-Updates

Set Row Count per Page

Administrators can customize the BOM Item Tree and BOM Item Mapping Tree page sizes.

1. Navigate to Admin > General > General Site Options

2. Click Feature Settings > Row Count Per Page.

3. Use the Drop-down menus to set BOM Item List Page Result Set Sizes.

Customize BOM Item Page Sizes

56

APPENDIX A: BOM MAPPING SYSTEM ATTRIBUTES

Several new system attributes support the BOM Mapping feature. Administrators can use these attributes to

display the BOM hierarchy or hierarchy relationships in the Commerce Transaction Line Item Grid user interface.

For more information on these attributes and their role in BOM Mapping and Subscription Ordering, refer to the

BOM Mapping Implementation Guide and the Asset-Based Ordering Implementation Guide.

Name Variable Name Type Description

Line Item BOM ID _line_bom_id Text The BOM item instance id.

Line Item BOM ID _line_bom_parent_id Text The parent BOM item instance id.

Line BOM Part

Number

_line_bom_part_number Text The part number of the BOM item. Only

applicable to the model line.

Line Item BOM

Attributes

_line_bom_attributes Text BOM attributes, stored as a JSON string.

 Line BOM Item

Quantity

_line_bom_item_quantity Integer The BOM item line quantity. This is the

unexploded line quantity, whereas

_price_quantity stores the exploded quantity.

Line BOM Level _line_bom_level Integer The BOM item depth (level) in the quote. The

value is 0 for the root BOM item.

Line BOM Effective

Date

_line_bom_effective_date Date BOM Effective Date. If null, it is interpreted as

the current time.

57

APPENDIX B: BOM ITEM DEFINITION TABLE SCHEMA

Default table name: Oracle_BomItemDef

Index Key Name Type Required Display Name Description / Comments

Y Y VariableName String Y Variable Name The primary key column of this table. This field cannot be empty.

 SequenceNum Integer Sequence

Number

BOM item sequence.

 ItemId String Y Item ID BOM item ID, e.g. Item Id as stored in EBS.

 Name String Y Name Display name.

 ItemType String Item Type BOM item type.

To enable inherited parent hierarchies for child BOM items, refer to

Option Class BOM Item Type.

Y PartNumber String Y Part Number Contains either the part number of a BOM item or a Model path (i.e. the path to a model

in the BOM hierarchy)

• This field contains the part number when both a part number and a model path are

required for System Configuration inter-model references.

• For model path syntax, refer to Model Path Format.

 DefaultQuantity Float Default Quantity The default quantity of the BOM item.

 Optional String Optional Indicates whether the BOM item is optional.

Valid values: Y or N.

 EffectiveFrom String Effective From The effective from date. Formatted as YYYY-MM-DD HH:mm:ss

 EffectiveTo String Effective To The effective to date. Formatted as YYYY-MM-DD HH:mm:ss

 SalesItem String Sales Item Indicates whether the item is a sales item.

Valid values: Y or N.

 ParentVariableName String Parent Variable

Name

The variable name of the hierarchical parent BOM item. This is a recursive key to the

parent BOM Item Definition BomItemDef.VariableName.

• This field is Null for the root Item.

• This field is required for all child items otherwise, a validation error will occur.

58

Index Key Name Type Required Display Name Description / Comments

Y RootVariableName String Y Root Variable

Name

The variable name of the root BOM item. This is a recursive key to the root BOM Item

Definition BomItemDef.VariableName.

• For a root BOM Item, the variable name and the root variable name are the same.

• Orphan records of dirty root BOM item variable names are ignored.

 ManufacturingItem String Manufacturing

Item

Indicates whether the item is a manufacturing item.

Valid values: Y or N.

 IncludedInBasePrice String Included In Base

Price

This is an optional column that indicates whether the item is included in the base price.

Valid values: Y or N.

59

DEFINE PARTS AND MODELS AS CHILD ITEM IN THE BOM HIERARCHY

Any part or model can be defined as a child item in the BOM hierarchy. Administrators accomplish this using

either the BOM Item Definition table or the Save BOM BML function.

IMPORTANT: To add a child model to a BOM using a BOM Mapping Rule, administrators must add the child

model to the BOM Item Mapping table. If adding a child model to a BOM using the Save BOM BML function, this

step is not necessary.

The PartNumber column in the BOM Item Definition table can contain either the part number of a BOM item

or the path to a model in the BOM hierarchy.

Model Path Format

The format for defining the path to a model is as follows:

productFamilyVariableName:productLineVariableName:modelVariableName

IMPORTANT: Entries in the PartNumber column that contain colons (:) represent a path to a model.

"Option Class" BOM Item Type

Beginning in Release 18B, the "Option Class" BOM item type can be used to enable inherited parent hierarchies

for child BOM items. Option Class items are only added if they contain a descendant BOM item (child,

grandchild, etc.) that is not an Option Class item.

Option Class Example

The following image displays a Configuration page for a cable channel provider that offers different channel

options as part of their Sports Channel and Entertainment Channel plans.

Sample Configuration Page for Cable Channel Provider

60

When the user selects the Baseball channel and creates a transaction, the parent items (I.e. "Channels" and

"Sports Channels") are automatically added as Line Items to the Transaction. The parent items are also added to

the BOM Instance, which is sent to the Fulfillment System, to complete the order.

Commerce Transaction for Sports Channel Page

For parent items the Item Type is set to "Option Class", the Item Type for child items can be set to anything

other than "Option Class". The BOM parent items will only be added to the BOM Instance when a nested child

item is selected. During table-based BOM mapping, "Option Class" items are not added to the BOM instance

unless they have a descendant that is not an "Option Class" item.

Advanced BML BOM Mapping rules can be used to add "Option Class" items that do not have a descendant that

is not an "Option Class" item.

BOM Item Definition Data Table with Option Class Item Types

61

APPENDIX C: BOM ITEM MAPPING TABLE SCHEMA

Default table name: Oracle_BomItemMap

Index Key Name Type Required Display Name Description / Comments

 Y VariableName String Y Variable Name The primary key column of this table.

 BomItemVarName String Y BOM Item Variable

Name

The variable name of the BOM item. This is a foreign key to

BomItemDef.VariableName.

The BOM item must exist otherwise, a validation error will occur.

 ConfigAttrVarName String Configurable Attribute

Variable Name

The variable name of the Configuration attribute.

• If this field is not null, the BOM item is created when the buy-side

configurator attribute value matches the value stored in

"ConfigAttrValue" column.

• If this field is null, the BOM item is created unconditionally.

 ConfigAttrValue String Configurable Attribute

Value

The value of the configurable attribute.

This field can be null. A null values is interpreted as an empty string.

Y ParentBomMapVarName String Y Parent BOM Map

Variable Name

The fully qualified variable name of the BOM Map Configuration rule.

Formatted as: productFamilyVarName:productLineVarName:

modelVarName:configRuleVarName.

Orphan records of invalid BOM mapping rule variable names are ignored.

 EffectiveFrom String Effective From The effective from date. Formatted as YYY-MM-DD HH:mm:ss

 EffectiveTo String Effective To The effective to date. Formatted as YYY-MM-DD HH:mm:ss

 ConfigAttrVarName1

through
ConfigAttrVarName10

String Configurable Attribute

Variable Name 1

through

Configurable Attribute

Variable Name 10

Additional mapping attribute name fields to support mapping to multiple

Configurable Attributes.

Refer to Multiple Attribute Mapping for BOM Mapping Items.

 ConfigAttrValue1

through
ConfigAttrValue10

String Configurable Attribute

Value 1

through

Configurable Attribute

Value 10

Additional mapping attribute value fields to support mapping to multiple

Configurable Attributes.

Refer to Multiple Attribute Mapping for BOM Mapping Items.

62

MULTIPLE ATTRIBUTE MAPPING FOR BOM MAPPING ITEMS

Beginning in Release 18B, ten additional mapping attribute and value fields are available for the BOM Item

Mapping table to support mapping to multiple Configurable Attributes. This allows the selection of multiple

configuration options to add a single Line Item to a BOM-related Transaction.

Additional Configurable Attributes for BOM Item Mapping

The BOM Item Mapping Table associates BOM items to Configuration attributes. Administrators will upload or

migrate BOM structures to CPQ Data Tables using CPQ Cloud’s standard importing features. The Data Table can

then be linked to the corresponding BOM Mapping platform tables. Activating this table enables simple Table-

Based BOM Mapping Configuration rules. The items that are available for mapping are displayed in the Column

Mapping drop-down menus. The list of menu options is derived from the BOM Item Mapping Data Table

columns Names.

Edit BOM Table Definition Page for BOM Item Mapping

63

Configurable Attribute Columns in the BOM Item Mapping Data Table

Prior to mapping, the additional Configurable Attribute and Value fields must be added to the BOM Item

Mapping Data Table Schema tab. The following image displays a BOM Item Mapping Data Table with ten

additional Configurable Attribute and Value columns added to the Data Table schema.

Oracle BomItemMap Data Table with Additional Configurable Attribute Columns

64

Multiple Attribute Mapping Example

After the additional Configurable Attribute and Value fields have been added to the BOM Item Mapping Data

Table schema, the Data Table can be populated with the additional Configurable Attributes and Values. BOM

Mapping can now evaluate the combination of several different Configuration attributes and then add a single

child part to the quote based on multiple attribute selections.

For example: The following BOM Item Mapping Data displays two BOM items with "speed" and "dataDownload"

attributes. If a user selects a speed of 40Mbps and a data download option of 100GB, then the TelecomPackage1

part will be added to the quote.

BOM Item Mapping Data Table

When additional Configurable attributes have been added and mapped, administrators can view the mapped

attributes in the BOM Item Mapping Administration List and BOM Item Mapping Administration pages.

View BOM Item Mapping Administration Pages

Complete the following steps to view additional configurable attributes.

1. Navigate to the Admin Home Page.

2. Under Products, click Catalog Definition.

The Supported Products page opens.

3. Select Product Families from the Navigation drop-down.

4. Click List.

The Supported Product Families page opens.

5. Next to the applicable Product Family, select Product Lines from the Navigation drop-down.

6. Click List.

The Product Line Administration List page opens.

7. Next to the applicable Product Line, select Models from the Navigation drop-down.

8. Click List.

The Model Administration List page opens.

9. Next to the applicable Model, select BOM Mapping from the Navigation drop-down.

10. Click List.

The BOM Mapping: Rules List page opens.

11. Select the applicable rule.

The BOM Mapping Rule page opens.

65

BOM Mapping Rule Page

12. Click Save and View Details.

The BOM Mapping Administration List page opens.

In the following image, the mapped Configuration Attributes are shown. If there are any Additional

Configurable Attributes, the Additional Attribute Mapped column will be set to Y.

BOM Item Mapping Administration List Page

13. Select the applicable Variable Name to view the Additional Configurable Attributes.

The BOM Item Mapping Administration page opens.

The associated Configurable Attribute and Additional Configurable Attributes are displayed.

For example: The BOM Item Mapping details for "TelecomPackage1" are displayed in the following

image. When "40Mbps" is selected for the "speed" attribute and "100GB" is selected for the

"dataDownload" attribute, the TelecomPackage1 part will be added to the quote.

66

BOM Item Mapping Administration Page

67

APPENDIX D: BOM ATTRIBUTE DEFINITION TABLE SCHEMA

Default table name: Oracle_BomAttrDef

Index Key Name Type Required Display Name Description / Comments

Y Y VariableName String Y Variable Name The primary key column of this table.

 Name String Name Display name of the attribute, in the site base language.

 Values String Values Domain values of the attribute if the attribute is a menu type.

Values of the attribute separated by ~. Applicable only if the attribute is a menu

type, otherwise this value is empty. The values use the site base language.

 DisplayValues String Display Values Display values of the attribute if the attribute is a menu type separated by ~.

Must be empty if Values column is empty. If Values is not empty, the number of

display values as separated by ~ must match that of values. The values use the site

base language,

 EffectiveFrom String Effective From The effective from date. Formatted as: YYYY-MM-DD HH:mm:ss

 EffectiveTo String Effective To The effective to date. Formatted as : YYYY-MM-DD HH:mm:ss

 BomItemVarName String Y BOM Item Variable

Name

The variable name of the parent BOM item. Key to

bomAttrDef.VariableName

Orphan records of dirty BOM item variable names are ignored.

 DataType String Data Type The data type of the attribute values. Legal Values: String, Integer, Float, Date,

Boolean

Y RootBomItemVarName String Y Root BOM Item

Variable Name

The variable name of the root BOM item. Key to

BomItemDef.VariableName of the root BOM item definition.

Orphan records of dirty root BOM item variable names are ignored.

68

APPENDIX E: BOM ATTRIBUTE MAPPING TABLE SCHEMA

Default table name: Oracle_BomAttrMap

Index Key Name Type Required Display Name Description / Comments

 Y VariableName String Y Variable Name This is the primary key for the table.

 TargetType String Y Target Type The mapping target type. Acceptable values are:

• BOM_ATTTRIBUTE: mapped to a BOM item attribute

• LINE_ATTRIBUTE: mapped to commerce (quote) line attribute

• QUANTITY: The BOM line item quantity.

 TargetVariableName String Target Variable Name The variable name of the target BOM attribute or commerce line attribute.

Depending on the target type, this is the variable name of the target BOM

attribute or line attribute.

 SourceType String Y Source Type The mapping source type. Acceptable values are:

• STATIC_ENTRY: The target is always set to the value in StaticEntry

• CONDITIONAL_STATIC_ENTRY: The target is set to the value in Static

Entry if the configuration attribute at runtime matches the value to

ConfigAttrValue.

• CONFIG_ATTRIBUTE: the target is set to the value of the configuration

attribute

 StaticEntry String Static Entry A static value that is used as the source of mapping

 ConfigAttrVarName String Configurable Attribute

Variable Name

The variable name of the configurable attribute.

 ConfigAttrValue String Configurable Attribute

Value

The value of the configurable attribute.

 EffectiveFrom String Effective From The effective from date. Formatted as YY-MM-DD HH:mm:ss

 EffectiveTo String Effective To The effective to date. Formatted as YYY-MM-DD HH:mm:ss

69

Index Key Name Type Required Display Name Description / Comments

 BomItemMapVarName String Y BOM Item Map

Variable Name

The variable name of the parent BOM item map.

Key to BomItemMap.VariableName.

Orphan records of invalid BOM item mapping variable names are ignored.

Y RootBomMapVarName String Y Root BOM Map

Variable Name

The fully qualified variable name of the BOM Mapping Configuration rule.

Formatted as: productFamilyVarName:productLineVarName:

modelVarName:configRuleVarName.

Orphan records of invalid root BOM mapping rule variable names are

ignored.

70

APPENDIX F: BOM ATTRIBUTE TRANSLATION TABLE SCHEMA

Default table name: Oracle_BomAttr_Tr

Index Key Name Type Required Display Name Description / Comment

Y Y VariableName String Y Variable Name The primary key column of this table.

 Language String Y Language The language in which the translations of the given record is defined.

For example: de for German,

zh_CN for Chinese Simplified

 BomAttrVariableName String Y BOM Attribute

Variable Name

The variable name of the parent BOM attribute. Key to

BomAttrDef.VariableName.

Orphan records of dirty BOM attribute variable names are ignored.

 Name String Name The translation of display name, corresponding to BomAttrDef.Name.

 Values String Values The translation of values of the attribute, corresponding to

BomAttrDef.Values

Y RootBomItemVarName String Y Root BOM Item

Variable Name

The variable name of the root BOM item.

Key to BomItemDef.VariableName of the root BOM item definition.

Orphan records of dirty root BOM item variable names are ignored.

71

APPENDIX G: BOM MAPPING CONFIGURABLE ARRAY ATTRIBUTE RESTRICTIONS

The following restrictions on configurable array attribute mapping are enforced, primarily to maintain one-to-one mapping between a row in the array set

and a BOM item.

Sequence Mapping Rule Sample Validation Error Message

1 BOM Item

Mapping

A BOM item mapping can use more than one

configurable array attribute, but they must be

all from the same array set.

The following example is illegal:

BOM1|drinkType=Coffee|CarType=SUV

The BOM item mapping BOM1 is mapped from the following configuration array attributes in

different array sets: Drink, Car.

2 BOM Item

Mapping

A configurable array attribute should not be

used more than once in a single BOM item

mapping.

The following example is illegal:

BOM1|DrinkType=Coffee|DrinkType=Tea

The configuration attribute DrinkType is used more than once in the BOM item mapping BOM1.

3 BOM Item

Mapping

If two BOM item mappings use configurable

array attributes from the same array set, the

array attributes must be the same in both BOM

item mappings.

The following example is illegal:

BOM1|drinkType=Coffee|drinkSize=Medium

BOM2|drinkType=Tea

BOM item mapping BOM1 and BOM2 must be mapped from same configuration array

attributes from the same array set.

4 BOM Item

Mapping

If two BOM item mappings use configurable

array attributes, the combination of array

attributes and values must be unique.

In other words, the same combination of

configurable array attributes and values cannot

be used to map to two different BOM items.

The following example is illegal:

BOM1|drinkType=Coffee|drinkSize=Medium

BOM2|drinkType=Coffee|drinkSize=Medium

BOM item mapping BOM1 and BOM2 are mapped from exactly same values for configuration

array attributes.

72

Sequence Mapping Rule Sample Validation Error Message

5 BOM Item

Mapping

 If a BOM item mapping uses a configuration

array attribute, it is illegal for one of its

hierarchical parent BOM item mapping

(including parent, grandparent, ...) to use

configurable array attributes (whether or not

from the same array set).

The following example is illegal:

BOM1|drinkType=Coffee

BOM2 (parent: BOM1) drinkSize=Medium

Configuration array attributes cannot be used in nested BOM item mapping. Configuration

attribute drinkSize is an array attribute, but BOM item mapping coffeeMapping, a hierarchical

parent, is already mapped with array attribute(s) drinkType.

6 BOM

Attribute

Mapping

If an attribute mapping uses a configurable

array attribute, its containing BOM item

mapping must use at least one configurable

array attributes.

The following example is illegal:

BOM1|eventType=FundRaising (attribute mapping: drinkType=Coffee)

Cannot map to an array type configuration attribute drinkType as the parent BOM item

mapping is not mapped to an array type attribute.

7 BOM

Attribute

Mapping

If an attribute mapping uses a configurable

array attribute, the containing BOM item

mapping must use one or more configurable

array attributes from the same array set.

The following example is illegal:

BOM1|carType=SUV (attribute mapping: drinkType=Coffee)

Cannot map to a configuration attribute in the array set Car as its parent BOM item mapping

maps to an attribute in a different array set Dessert.

8 BOM

Attribute

Mapping

Attribute mapping cannot use the same

configurable array attributes that are used in its

containing BOM item mapping.

The following example is illegal:

BOM1|drinkType=Coffee (attribute mapping: drinkType=Coffee)

Cannot map to the same array attribute drinkType as used in the parent BOM item mapping.

9 BOM

Attribute

Mapping

If configurable array attributes are used in BOM

attribute mappings, the same array attributes

should be used in BOM attribute mappings of all

BOM item mappings that use the same

configurable array set. This is similar to Rule (3)

of BOM item mapping.

The following example is illegal:

BOM1|drinkType=Coffee (attribute mapping: drinkSize=Medium)

BOM2|drinkType=Tea (no attribute mapping)

Validation error will be added in a future release.

IMPORTANT: BOM Attributes can be mapped to both Configurable Array Attributes and non-array type Configurable Attributes.

73

APPENDIX H: BML FUNCTIONS FOR BOM MAPPING

The following BML functions to support the BOM Mapping feature: getbom, savebom, convertbomtoflat, and

convertbomtohier.

GET BOM BML FUNCTION

For fulfillment system integrations, the getbom function retrieves the saved Sales BOM or Manufacturing BOM

from a quote, to submit to the fulfillment system for order fulfillment.

For Subscription Ordering, the getbom function retrieves the saved Sales BOM from open orders.

getbom

Parameters bsId Integer Use this parameter to specify the Commerce Transaction ID.

lineNumber Integer Use this parameter to specify the document number of the model

line. The line number also represents the root BOM line in the

quote.

lineFields String Use this parameter to identify additional line attributes fetched

from the quote line, then stored in the returned BOM instance.

Optional, the default value is null if not provided.

validateBomModel Boolean Use this parameter to validate the returned BOM against the latest

BOM item definition. Validation will:

• Verify the BOM instance tree (parts and hierarchy) against the

BOM item definition.

• Populate the BOM item variable names.

• Correct the BOM instance hierarchy according to the latest

definition.

• Exclude items that no longer exist in the latest definition.

Optional, the default value is true if not provided.

flattenChildItems Boolean Use this parameter to flatten child items and return all descendant

BOM items as direct children of the root BOM item.

Optional, the default value is false if not provided.

isSalesBom

Boolean

This parameter returns a Sales BOM if true, and a Manufacturing

BOM if false.

Optional, the default is true if not provided.

Syntax Json getbom(Integer bsId, Integer lineNumber [, String[] lineFields [,

Boolean validateBomModel [, Boolean flattenChildItems [, Boolean

isSalesBom]]]])

Sample Input bsId 18430319

lineNumber 2

74

getbom

Sample Return
{

 "partNumber": "part49",

 "quantity": 10,

 "id": "BOM_root",

 "parentId": "",

 "attributes": {},

 "fields": {

 "_line_bom_level": "0"

 },

 "explodedQuantity": 10,

 "category": "sales",

 "variableName": "root",

 "definition": {

 "SequenceNum": 814,

 "ItemId": "814",

 "ItemType": "Standard Item",

 "Optional": "Y"

 },

 "children": [

 {

 "partNumber": "part50",

 "quantity": 5,

 "id": "BOM_text_bom",

 "parentId": "BOM_root",

 "attributes": {},

 "fields": {

 "_line_bom_level": "1"

 },

 "explodedQuantity": 50,

 "variableName": "text_bom",

 "definition": {

 "SequenceNum": 815,

 "ItemId": "815",

 "ItemType": "Standard Item",

 "Optional": "Y"

 }

 }

]

}

75

SAVE BOM BML FUNCTION

The savebom function saves a BOM into a quote without Configuration attributes and returns the document

number of the saved quote. For Subscription Ordering, the savebom function saves discontinued assets into a

quote.

savebom

Parameters bsID Integer Use this parameter to specify the Commerce Transaction ID.

bomJson JSON Use this parameter to hold the BOM instance JSON data.

Syntax Integer savebom(Integer bsId, Json bomJson)

Sample Input bsId 18430319

bomJson {

 "partNumber": "part49",

 "id": "BOM_root",

 "quantity": 10,

 "parentId": "",

 "attributes": {},

 "fields": {"_line_bom_level": "0"},

 "explodedQuantity": 10,

 "category": "sales",

 "variableName": "root",

 "definition": {

 "SequenceNum": 814,

 "ItemId": "814",

 "ItemType": "Standard Item",

 "Optional": "Y"

 }, "children":[{

 "partNumber": "part50",

 "quantity": 5,

 "id": "BOM_text_bom",

 "parentId": "BOM_root",

 "attributes": {},

 "fields": {"_line_bom_level": "1"},

 "explodedQuantity": 50,

 "variableName": "text_bom",

 "definition": {

 "SequenceNum": 815,

 "ItemId": "815",

 "ItemType": "Standard Item",

 "Optional": "Y"

 }

 }]

}

Sample Return 5

76

GET CONFIGURATION BOM BML FUNCTION

Retrieves the configbom stored via the saveConfigBom API and the configBom created via an external client

application Configurator UI session. The library function extracts and returns a client integration BOM instance

from the CPQ Cloud configBomInstance resource using the "configId".

getConfigbom

Parameters configId Integer The Configuration ID for the client side integration action

This is not the same as the configuration_id system attribute.

 For UI integrations, the client side integration action

returns the config_id in the response JSON.

 For other actions such as Terminate, Renew, Suspend,

and Resume order, RESTful calls generated from the

saveBomConfig BML function return the lineId.

flattenChildProducts Boolean Use this parameter to flatten child items and return all

descendant BOM items as direct children of the root BOM

item.

Optional, the default value is false if not provided.

Syntax getconfigbom(configId [, flattenChildProducts])

SAVE CONFIGURATION BOM BML FUNCTION

Allows users to save the BOM for non-configurator UI integration scenarios such as suspend, resume, and

terminate. The library function saves a client integration BOM instance and a "configId" to the CPQ Cloud

configBomInstance resource and returns a "configId".

saveConfigbom

Parameters configBomJson JSON The configuration BOM JSON to save.

Syntax getconfigbom(configId [, flattenChildProducts])

Return configId Integer The Configuration Id for the client side integration action.

77

CONVERT A HIERARCHICAL BOM INTO A FLATTENED BOM BML FUNCTION

The convertbomtoflat function converts a hierarchical BOM into a flattened BOM. A flat BOM stores all

descendants as direct children, including children, grandchildren, etc. Flattened BOMs are easier to process.

IMPORTANT: The input "bomJson" is not modified and will remain in a hierarchical BOM format.

convertbomtoflat

Parameter bomJson JSON Use this parameter to hold the JSON target.

Syntax Json convertbomtoflat(Json bomJson)

Sample Input

bomJson {"partNumber":"part1",

 "quantity":1,

 "id":"Bom1",

 "parentId":"",

 "children":[

 {"partNumber":"part2",

 "quantity":2,"id":"Bom2",

 "parentId":"","children":[

 {"partNumber":"part4",

 "quantity":4,

 "id":"Bom4",

 "parentId":""

 },

 {"partNumber":"part5",

 "quantity":5,

 "id":"Bom5",

 "parentId":""

 }

]

 },

 {"partNumber":"part3",

 "quantity":3,

 "id":"Bom3",

 "parentId":""

 }

]

}

78

convertbomtoflat

Sample Return

{

 "partNumber": "testbed:systemConfiguration:rootSystem",

 "quantity": 1,

 "isModel": true,

 "id": "BOM_SysConfigRoot",

 "parentId": "",

 "explodedQuantity": 1,

 "category": "sales",

 "children": [{

 "partNumber":

"testbed:systemConfiguration:conditionalChildren",

 "quantity": 1,

 "isModel": true,

 "id": "BOM_SysConfigNestKid3",

 "parentId": "BOM_SysConfigNest",

 "explodedQuantity": 1

 }, {

 "partNumber": "testbed:systemConfiguration:noBOMRule",

 "quantity": 1,

 "isModel": true,

 "id": "BOM_SysConfigNestKid2",

 "parentId": "BOM_SysConfigNest",

 "explodedQuantity": 1

 }, {

 "partNumber":

"testbed:systemConfiguration:differentConfiguration",

 "quantity": 1,

 "isModel": true,

 "id": "BOM_SysConfigNestKid1",

 "parentId": "BOM_SysConfigNest",

 "explodedQuantity": 1

 }, {

 "partNumber": "testbed:systemConfiguration:nestedHierarchies",

 "quantity": 1,

 "isModel": true,

 "id": "BOM_SysConfigNest",

 "parentId": "BOM_SysConfigRoot",

 "explodedQuantity": 1

 }

]

}

79

CONVERT A FLATTENED BOM INTO A HIERARCHICAL BOM BML FUNCTION

The convertbomtohier function converts a flattened BOM into a hierarchical BOM. Occasionally, administrators

flatten hierarchical BOMs for easier processing; this function returns the processed flattened BOM back into a

hierarchical BOM.

IMPORTANT: The input "bomJson" is not modified and will remain in a hierarchical BOM format.

convertbomtohier

Parameter bomJson JSON data type Use this parameter to hold the JSON target.

Syntax Json convertbomtohier(Json bomJson)

Sample Input

bomJson {

 "partNumber": "part1",

 "quantity": 1,

 "id": "Bom1",

 "parentId": "",

 "children": [{

 "partNumber": "part2",

 "quantity": 2,

 "id": "Bom2",

 "parentId": "Bom1"

 }, {

 "partNumber": "part3",

 "quantity": 3,

 "id": "Bom3",

 "parentId": "Bom1"

 }, {

 "partNumber": "part4",

 "quantity": 4,

 "id": "Bom4",

 "parentId": "Bom2"

 }, {

 "partNumber": "part5",

 "quantity": 5,

 "id": "Bom5",

 "parentId": "Bom2"

 }

]

}

80

convertbomtohier

Sample

Return

{

 "partNumber": "testbed:systemConfiguration:rootSystem",

 "quantity": 1,

 "isModel": true,

 "id": "BOM_SysConfigRoot",

 "parentId": "",

 "explodedQuantity": 1,

 "category": "sales",

 "children": [{

 "partNumber": "testbed:systemConfiguration:nestedHierarchies",

 "quantity": 1,

 "isModel": true,

 "id": "BOM_SysConfigNest",

 "parentId": "",

 "explodedQuantity": 1,

 "children": [{

 "partNumber":

"testbed:systemConfiguration:conditionalChildren",

 "quantity": 1,

 "isModel": true,

 "id": "BOM_SysConfigNestKid3",

 "parentId": "",

 "explodedQuantity": 1

 }, {

 "partNumber": "testbed:systemConfiguration:noBOMRule",

 "quantity": 1,

 "isModel": true,

 "id": "BOM_SysConfigNestKid2",

 "parentId": "",

 "explodedQuantity": 1

 }, {

 "partNumber":

"testbed:systemConfiguration:differentConfiguration",

 "quantity": 1,

 "isModel": true,

 "id": "BOM_SysConfigNestKid1",

 "parentId": "",

 "explodedQuantity": 1

 }

]

 }

]

}

81

APPENDIX I: BML FUNCTIONS FOR SYSTEM CONFIGURATION

The following BML functions are used to retrieve System Configuration attribute values from other configured models

within the system. These BML functions are available in Library functions, Util libraries, Configuration Advanced rules,

Commerce Advanced rules, Step Transitions, Advanced Step Notifications, and mass update of Transactions.

IMPORTANT:

• These functions should only be used with System Configurations. System Configurations are BOM hierarchies that

contain one or more nested child models.

• BML functions getSystemMultipleAttrValues, getSystemAttrValues, getSystemData will not return the

value of HTML attributes. This behavior is consistent with other configuration rules that do not allow the selection of

HTML attributes.

GET SYSTEM DATA BML FUNCTION

This BML function returns a JSON object representing the entire System Configuration for the current Transaction.

 getSystemData

Syntax Json getsystemdata()

Example systemJson = json();

systemJson = getsystemdata();

IMPORTANT:

• When not in the context of a Transaction, an empty JSON object is returned.

• If System Configuration Data does not exist, an empty JSON object is returned.

• This function will also return an empty JSON object if a System Configuration has not yet been configured.

• The empty JSON object should be handled accordingly.

GET SYSTEM ATTRIBUTES VALUES BML FUNCTION

This BML function returns a string containing a single attribute's values from a System Configuration.

 getSystemAttrValues

Parameter jsonPath String A string containing the JSON path

Syntax getsystemattrvalues(String jsonPath)

Example modelValue = String[];

modelValue = getsystemattrvalues("$.configAttributes.attributeVarname");

IMPORTANT:

• If the JSON Path does not return an array of single values, empty string array ("[]") will be returned.

• The function will also return empty values for any models that are yet to be configured and paths that do not return

values. The empty array should be handled accordingly.

82

GET SYSTEM MULTIPLE ATTRIBUTE VALUES BML FUNCTION

This BML function returns dictionary key and value string arrays containing attribute values from a System

Configuration.

getSystemMultipleAttrValues

Parameter Dictionary with String keys and String values. The values are expected to be JsonPath Expressions.

 The key should be an identifier for the attributes identified in the associated value.

 The values are expected to be JSON Path expressions that identify the location of the attribute in the

fully expanded system definition (BOM).

Syntax Dictionary<String[]> getsystemmultipleattrvalues(Dictionary<String>)

Return Returns a Dictionary (key: String, value: String[]) containing attribute values from a System Configuration.

 The keys will be the identifiers provided in the input Dictionary.

 The values will be the configured attribute values of the attribute(s) at the JSON Path expressions

associated with the input key.

Example jsonPaths = dict("string");

put(jsonPaths, "attributeVarname", "$.configAttributes.attributeVarname");

put(jsonPaths, "childAttributeVarname",

"$.children[*].configAttributes.childAttributeVarname");

interModelValues = dict("string[]");

interModelValues = getsystemmultipleattrvalues(jsonPaths);

values = String[];

values = get(interModelValues, "attributeVarname");

IMPORTANT:

• If a JSON Path does not return an array of single values, that key-value pair will result in an empty array.

• The function will return empty arrays for models that have not been configured and paths that do not return values.

The empty arrays should be handled accordingly.

83

APPENDIX J: BOM JSON OBJECTS AND EXAMPLES

BOM ITEM JSON OBJECT

The following table describes BOM Item fields in the JSON object.

Field Data Type Required Description

id String N The instance id of the BOM item.

variableName String N The variable name of the BOM Item Definition.

Required when BML-based rules are used to create the BOM

instance during Configuration.

category String N Legal values: sales, manufacturing.

Designates if a BOM is a Sales BOM or a Manufacturing BOM.

Applicable to the root BOM item only.

effectiveDate String N The effective date. In ISO format yyyy-MM-ddTHH:mm:ssZ.

Applicable to the root BOM item only.

parentId String N The parent BOM item instance id. The field is not defined unless

children items are flattened.

partNumber String Y The Part Number of the item.

 A sales item exists in the CPQ Parts Database and the back-end

fulfillment system with the same Part Number.

 A manufacturing item only exists in the back-end fulfillment

system; it is not required in the CPQ Parts Database.

quantity Long Y The line item quantity

isModel Boolean N Specifies if the BOM item is a model item. Used in the output BOM

item instance for system configuration. The flag does not need to be

explicitly set in BOM mapping BML.

explodedQuantity Long N The exploded line quantity

children Array N The child BOM items. A JSON array of BOM items.

attributes Object N A JSON object that stores the BOM attributes. The format is defined

in the BOM Attributes section.

definition Object N Additional BOM Item Definition items required when submitting

BOMs to back-end fulfillment systems, including SequenceNum,

ItemId, ItemType, Optional, and IncludedInBasePrice. The node is

populated in the output BOM instance for BOM item mapping and

the getBOM BML function when either validateBomModel is true or

isSalesBom is false. Do not explicitly populate this node in the BOM

mapping BML.

fields Object N Optional fields for ABO. The JSON object stores fields as key-value

pairs. If a BOM is saved to a quote, the fields are mapped to line

attributes. Field names must be line attribute variable names.

84

BOM ITEM ATTRIBUTE JSON OBJECT

The attributes of BOM items are represented by a single JSON object. Commerce sub document lines also use this

format to store the BOM attributes in the line attribute (_line_bom_attributes).

The field name is the BOM attribute Variable Name. The following table defines the BOM attribute values

Field Data Type Required Description

value • String

• Integer

• Number

• Boolean

• Date

• null

N If the data type is String, the value is in the site base language.

If the data type is Date, the value is stored in the JSON object as a as a

String using the ISO date time format

yyyy-MM-ddTHH:mm:ssZ.

displayValue String N The display value of the attribute, in the site base language

label String N Attribute (display) name, in the site base language.

translations Object N A JSON object represents the translation of attributes in the site non-

base language. The language code is the field name.

 { "de": {"label": xxx, "displayValue": xxx},

"fr":{"label": xxx, "displayValue":xxx}}

CPQ provides translation of values when the attribute is a menu type

and the data type is a String. Other data types are not translated.

85

BOM INSTANCE JSON EXAMPLE

The following example displays the JSON object for a sample BOM instance.

{

 "id": "7345ABCDE",

 "variableName": "BM54888-0",

 "partNumber": "BM54888",

 "quantity": 1,

 "definition": {"SequenceNum": 20, "ItemId": "EBS56321", "ItemType": "Optional Class"},

 "fields": {"_price_list_price_each": 99.12, "line_action_code": "Update"},

 //Optional fields injected

 "attributes": {

 "size": { //The attribute variable name

 "value": "L", //The attribute value in the site base language

 "displayValue": "Large", //The attribute display value in the site base language

 "label": "Size", //The attribute display name in the site base language

 "translations": {

 "de": { "label": "Größe", "displayValue": "groß" },

 "en": { "label": "Size", "displayValue": "Large" }

 }

 },

 "instruction": {

 "value": "Leave the package at the door.",

 "label": "Special Instruction",

 "translations": {

 "de": {"label": "Spezialanweisung"},

 // Only the label is translated, as the attribute is not a menu type.

 "en": { "label": "Special Instruction" }

 }

 }

 },

 "children": [

 {

 "variableName": "BM54888-1",

 "partNumber": "PT13345"

 "quantity": 1,

 "children": []

 },

 {

 "variableName": "BMDSK781-4",

 "partNumber": "DSK781-4",

 "quantity": 1

 }

]

}

IMPORTANT: // is used to add comments in the JSON object for explanation only. JSON does not formally support

comments.

86

APPENDIX K: WEB SERVICES FOR BOM MAPPING

GET CONFIGURATION INSTANCE REST API

This operation will use one of the following identifiers to retrieve a saved Configuration BOM Instance:

• The lineId returned from a Terminate, Suspend, Resume, or Renew service

• The config_id returned by client side JSON object for client integration case.

IMPORTANT: Get Configuration Instance is only available for external integrations.

Get Configuration Instance

URI Endpoint /rest/v6/configBomInstance/{config_Id}/actions/getConfigBom

Endpoint Parameters config_Id The Configuration BOM Instance Id

HTTP Method POST

Request Parameters flattenHierachy True Returns a flattened BOM structure True is the default value.

False Returns a hierarchical BOM structure

Response Parameters JSON data containing the saved Configuration BOM instance

URI Endpoint Sample

https://sitename.oracle.com/rest/v6/configBomInstance/36503159/actions/getConfigBom

Sample Request

{

 "flattenHierarchy": "true"

}

87

Sample Response

{

 "configBom": {

 "partNumber": "part1",

 "quantity": 3,

 "explodedQuantity": 3,

 "category": "sales",

 "id": "abo_3cf6636c-9119-4960-b185-d13daee2631d",

 "fields": {

 "_price_unit_price_each": "3.0",

 "oRCL_ABO_ActionCode_l": "NO_UPDATE",

 "fulfillmentStatus_l": "CREATED",

 "_is_line_item_mandatory": true,

 "itemInstanceName_l": "part1-36503087-1",

 "itemInstanceId_l": "abo_3cf6636c-9119-4960-b185-d13daee2631d"

 },

 "parentId": "",

 "children": [

 {

 "partNumber": "part22",

 "quantity": 1,

 "explodedQuantity": 6,

 "id": "abo_cdfd49b4-b500-4e11-84e7-3739d1f2625f",

 "fields": {

 "_price_unit_price_each": "US Dollar price not defined.",

 "oRCL_ABO_ActionCode_l": "NO_UPDATE",

 "_is_line_item_mandatory": true,

 "itemInstanceName_l": "part22-36503087-13",

 "itemInstanceId_l": "abo_cdfd49b4-b500-4e11-84e7-3739d1f2625f"

 },

 "parentId": "abo_d37e0168-c455-4748-af6c-da3fa2c0996c"

 },

 {

 "partNumber": "part222",

 "quantity": 1,

 "explodedQuantity": 6,

 "id": "abo_e3ddd440-6928-4231-88b2-3c6d3ed1c09f",

 "fields": {

 "_price_unit_price_each": "US Dollar price not defined.",

 "oRCL_ABO_ActionCode_l": "NO_UPDATE",

 "_is_line_item_mandatory": true,

 "itemInstanceName_l": "part222-36503087-12",

 "itemInstanceId_l": "abo_e3ddd440-6928-4231-88b2-3c6d3ed1c09f"

 },

 "parentId": "abo_d37e0168-c455-4748-af6c-da3fa2c0996c"

 }

]

 }

}

88

CONFIGURATION SOAP API SUPPORT FOR BOM MAPPING

The optional bomprice element is available for the Configuration SOAP API (v1 and v2). The response includes

the BOM price for sites using BOM Mapping if the BOM price is not zero.

Sample Response:

<bm:price>

 <bm:bomPrice>$16.0000</bm:bomPrice>

 <bm:totalPrice>$45.0000</bm:totalPrice>

</bm:price>

The web service WSDL, upon regeneration, includes the newly introduced "bomPrice"

optional element:

<xsd:complexType name="ConfigurationPriceType">

 <xsd:sequence>

 ...

 <xsd:element maxOccurs="1" minOccurs="0" name="bomPrice" nillable="true"

type="xsd:string"/>

 <xsd:element maxOccurs="1" minOccurs="1" name="totalPrice" nillable="false"

type="xsd:string"/>

 </xsd:sequence>

</xsd:complexType>

Copyright © 2018 Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected
by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce,
translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report
them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government,
then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal
Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, shall be subject
to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for
use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware
in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous
applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are
trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or
registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products, and services from third parties.
Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content,
products, and services unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not
be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

	BOM Mapping Implementation Guide
	Revision History
	Introduction
	Purpose
	Prerequisites
	Scope

	BOM Mapping Overview
	BOM Mapping Tables
	BOM Item Definition Table
	BOM Item Mapping Table
	BOM Attribute Definition Table
	BOM Attribute Mapping Table
	BOM Attribute Translation Table

	BOM Table Relationships
	BOM Mapping Use Cases
	BOM Mapping Functional Overview
	Basic BOM Mapping Process Flows
	Full-Service BOM Mapping Process Flows

	BOM Mapping Configuration Rules
	BOM Item Configuration Rules
	Configuration BOM Item Mapping
	Reconfiguration BOM Item Mapping

	BOM Attribute Configuration Rules
	BOM Mapping Rule Execution
	Effective Dates
	Mapping to Single Select Pick List Attributes

	BOM Instance
	Sales and Manufacturing BOMs
	Capture a BOM Instance in Commerce Transactions
	Structure
	Quantity
	Model Quantity and Pricing

	Save a BOM Instance to a Quote

	Implementing BOM Mapping
	Capture BOM Definitions in CPQ BOM Data Tables
	Activate BOM Tables
	Map BOM Data Tables to CPQ BOM Platform Tables
	Validate BOM Definitions
	BOM with Models as Children
	Validation Errors
	BOM Mapping with Two Validation Errors
	Validation Error in BOM Hierarchy with Models as Children

	Create BOM Mapping Configuration Rules
	Define Simple Table-based Configuration Rules
	Validate Table-based BOM Mapping Rules
	Mapping to Configurable Array Attributes
	BOM Item Mapping for Configurable Array Attributes
	BOM Attribute Mapping for Configurable Array Attributes
	Reconfiguration of Configurable Array Attributes

	Define Advanced BML-based Configuration Rules
	From Configuration to BOM
	Read and Update BOM Items Sample
	Add a BOM Item Sample
	Create a Root BOM from Scratch Sample
	Delete a BOM Item Sample
	Add a BOM Attribute Sample
	Configurable Array Attributes Sample
	Manufacturing BOM vs Sales BOM
	JSON Path Functions

	From BOM to Launch Configurations
	Override Simple Configurable Attributes Sample
	Override Configurable Array Attributes Sample

	Referencing BOM Items
	BOM Item Definition Tree References
	BOM Item Mapping Tree References

	BML Functions to Extract Sales and Manufacturing BOMs
	Advanced Settings
	Disable Auto Updates
	Set Row Count per Page

	Appendix A: BOM Mapping System Attributes
	Appendix B: BOM Item Definition Table Schema
	Define Parts and Models as Child Item in the BOM Hierarchy
	Model Path Format
	"Option Class" BOM Item Type

	Appendix C: BOM Item Mapping Table Schema
	Multiple Attribute Mapping for BOM Mapping Items
	Additional Configurable Attributes for BOM Item Mapping
	Configurable Attribute Columns in the BOM Item Mapping Data Table
	View BOM Item Mapping Administration Pages

	Appendix D: BOM Attribute Definition Table Schema
	Appendix E: BOM Attribute Mapping Table Schema
	Appendix F: BOM Attribute Translation Table Schema
	Appendix G: BOM Mapping Configurable Array Attribute Restrictions
	Appendix H: BML Functions for BOM Mapping
	Get BOM BML Function
	Save BOM BML Function
	Get Configuration BOM BML Function
	Save Configuration BOM BML Function
	Convert a Hierarchical BOM into a Flattened BOM BML Function
	Convert a Flattened BOM into a Hierarchical BOM BML Function

	Appendix I: BML Functions for System Configuration
	Get System Data BML Function
	Get System Attributes Values BML Function
	Get System Multiple Attribute Values BML Function

	Appendix J: BOM JSON Objects and Examples
	BOM Item JSON Object
	BOM Item Attribute JSON Object
	BOM Instance JSON Example

	Appendix K: Web Services for BOM Mapping
	Get Configuration Instance REST API
	Configuration SOAP API Support for BOM Mapping

